Loading…
Analysis of critical negative rake angle and friction characteristics in orthogonal cutting of AL1060 and T2
The stagnant region often appears in front of the tool cutting edge, which is caused by mechanical inlay and excessive pressing in plastic metal cutting with large negative rake angle tools at a low speed. It results in the change of the effective negative rake angle which can affect the flow charac...
Saved in:
Published in: | Science progress (1916) 2020-01, Vol.103 (1), p.1-18 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stagnant region often appears in front of the tool cutting edge, which is caused by mechanical inlay and excessive pressing in plastic metal cutting with large negative rake angle tools at a low speed. It results in the change of the effective negative rake angle which can affect the flow characteristics of material, the quality of machined surface and the abrasion loss of cutting tools. However, the critical negative rake angle model based on the existence of the stagnant region has not been reported yet. Therefore, in order to investigate the critical negative rake angle value considering the stagnant region, a critical negative rake angle model based on the principle of minimum required energy is established, and the correctness of the theoretical model is verified by orthogonal cutting experiments. At the same time, the influence of the critical value of the large negative rake angle tool on the machined surface quality is studied through different cutting experiments. These experimental results show that the deviations of both experimental and theoretical critical negative rake angle are less than 5% during the orthogonally cutting of the aluminium (AL1060) and copper (T2) materials by the negative rake angle tool. Meanwhile, the critical negative rake angle is related to the adhesive friction coefficient of tool–workpiece contact surface. The analysis of friction characteristics shows that the deviation values of both theoretical and experimental critical negative rake angle are proportional to the coefficient of adhesive friction and the thickness of the stagnant region. Critical negative rake angle has a significant effect on roughness and residual stress of the machined surface. |
---|---|
ISSN: | 0036-8504 2047-7163 |
DOI: | 10.1177/0036850419878065 |