Loading…

Single and Combined Effects of Chlorpyrifos and Glyphosate on the Brain of Common Carp: Based on Biochemical and Molecular Perspective

Chlorpyrifos (CPF) and glyphosate (GLY) are the most widely used organophosphate insecticide and herbicide worldwide, respectively; co-occurrence of CPF and GLY in aquatic environments occurs where they inevitably have potential hazards to fish. However, the potential mechanisms of CPF and GLY to in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-08, Vol.24 (16), p.12934
Main Authors: Zhang, Dongfang, Ding, Weikai, Liu, Wei, Li, Liuying, Zhu, Gongming, Ma, Junguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chlorpyrifos (CPF) and glyphosate (GLY) are the most widely used organophosphate insecticide and herbicide worldwide, respectively; co-occurrence of CPF and GLY in aquatic environments occurs where they inevitably have potential hazards to fish. However, the potential mechanisms of CPF and GLY to induce toxicity have not been fully explored. To identify the adverse impacts of CPF and GLY on fish, either alone or in combination (MIX), CPF (25 μg/L) and GLY (3.5 mg/L) were set up according to an environmentally relevant concentration to expose to common carp for 21 days. After exposure, CPF and GLY decreased the activities of acetylcholinesterase and Na /K -ATPase, altered monoamine oxidase levels, decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione S-transferase and glutamic reductase), and induced the accumulation of malondialdehyde in the carp brain. The parameters in the MIX groups had a greater impact compared to that in the CPF or GLY group, suggesting that both single and combined exposure could affect neurological signaling systems and cause oxidative stress and lipid peroxidation damage in carp brains, and that MIX exposure increases the impact of each pollutant. RNA-seq results showed that single or combined exposure to CPF and GLY induced global transcriptomic changes in fish brains, and the number of differentially expressed genes in MIX-treated carp brains were globally increased compared to either the CPF or GLY groups, suggesting that the effects of co-exposure were greater than single exposure. Further analysis results revealed that the global transcriptomic changes participated in oxidative stress, immune dysfunction, and apoptosis of fish brains, and identified that the P13k-Akt signaling pathway participates in both single and combined exposure of CPF- and GLY-induced toxicity. Taken together, our results demonstrated that the interaction of CPF and GLY might be synergic and provided novel insights into the molecular mechanisms of fish brains coping with CPF and GLY.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241612934