Loading…
Artificial Neural Networks for Predicting the Diameter of Electrospun Nanofibers Synthesized from Solutions/Emulsions of Biopolymers and Oils
In the present work, different configurations of nt iartificial neural networks (ANNs) were analyzed in order to predict the experimental diameter of nanofibers produced by means of the electrospinning process and employing polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/aloe vera (Av) solutions....
Saved in:
Published in: | Materials 2023-08, Vol.16 (16), p.5720 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present work, different configurations of nt iartificial neural networks (ANNs) were analyzed in order to predict the experimental diameter of nanofibers produced by means of the electrospinning process and employing polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/aloe vera (Av) solutions. In addition, gelatin type A (GT)/alpha-tocopherol (α-TOC), PVA/olive oil (OO), PVA/orange essential oil (OEO), and PVA/anise oil (AO) emulsions were used. The experimental diameters of the nanofibers electrospun from the different tested systems were obtained using scanning electron microscopy (SEM) and ranged from 93.52 nm to 352.1 nm. Of the three studied ANNs, the one that displayed the best prediction results was the one with three hidden layers with the flow rate, voltage, viscosity, and conductivity variables. The calculation error between the experimental and calculated diameters was 3.79%. Additionally, the correlation coefficient (R2) was identified as a function of the ANN configuration, obtaining values of 0.96, 0.98, and 0.98 for one, two, and three hidden layer(s), respectively. It was found that an ANN configuration having more than three hidden layers did not improve the prediction of the experimental diameter of synthesized nanofibers. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16165720 |