Loading…

A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii

Abstract Phase separation underpins many biologically important cellular events such as RNA metabolism, signaling, and CO2 fixation. However, determining the composition of a phase-separated organelle is often challenging due to its sensitivity to environmental conditions, which limits the applicati...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2023-09, Vol.35 (9), p.3260-3279
Main Authors: Lau, Chun Sing, Dowle, Adam, Thomas, Gavin H, Girr, Philipp, Mackinder, Luke C M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Phase separation underpins many biologically important cellular events such as RNA metabolism, signaling, and CO2 fixation. However, determining the composition of a phase-separated organelle is often challenging due to its sensitivity to environmental conditions, which limits the application of traditional proteomic techniques like organellar purification or affinity purification mass spectrometry to understand their composition. In Chlamydomonas reinhardtii, Rubisco is condensed into a crucial phase-separated organelle called the pyrenoid that improves photosynthetic performance by supplying Rubisco with elevated concentrations of CO2. Here, we developed a TurboID-based proximity labeling technique in which proximal proteins in Chlamydomonas chloroplasts are labeled by biotin radicals generated from the TurboID-tagged protein. By fusing 2 core pyrenoid components with the TurboID tag, we generated a high-confidence pyrenoid proxiome that contains most known pyrenoid proteins, in addition to new pyrenoid candidates. Fluorescence protein tagging of 7 previously uncharacterized TurboID-identified proteins showed that 6 localized to a range of subpyrenoid regions. The resulting proxiome also suggests new secondary functions for the pyrenoid in RNA-associated processes and redox-sensitive iron–sulfur cluster metabolism. This developed pipeline can be used to investigate a broad range of biological processes in Chlamydomonas, especially at a temporally resolved suborganellar resolution. A high-confidence proteome of the CO2-fixing algal pyrenoid is identified by proximity labeling.
ISSN:1040-4651
1532-298X
1532-298X
DOI:10.1093/plcell/koad131