Loading…

Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery

Wavelength selection from a large diffuse reflectance spectroscopy (DRS) dataset enables removal of spectral multicollinearity and thus leads to improved understanding of the feature domain. Feature selection (FS) frameworks are essential to discover the optimal wavelengths for tissue differentiatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical optics 2023-12, Vol.28 (12), p.121207
Main Authors: Li, Celina L, Fisher, Carl J, Komolibus, Katarzyna, Grygoryev, Konstantin, Lu, Huihui, Burke, Ray, Visentin, Andrea, Andersson-Engels, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3
cites cdi_FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3
container_end_page
container_issue 12
container_start_page 121207
container_title Journal of biomedical optics
container_volume 28
creator Li, Celina L
Fisher, Carl J
Komolibus, Katarzyna
Grygoryev, Konstantin
Lu, Huihui
Burke, Ray
Visentin, Andrea
Andersson-Engels, Stefan
description Wavelength selection from a large diffuse reflectance spectroscopy (DRS) dataset enables removal of spectral multicollinearity and thus leads to improved understanding of the feature domain. Feature selection (FS) frameworks are essential to discover the optimal wavelengths for tissue differentiation in DRS-based measurements, which can facilitate the development of compact multispectral optical systems with suitable illumination wavelengths for clinical translation. The aim was to develop an FS methodology to determine wavelengths with optimal discriminative power for orthopedic applications, while providing the frameworks for adaptation to other clinical scenarios. An ensemble framework for FS was developed, validated, and compared with frameworks incorporating conventional algorithms, including principal component analysis (PCA), linear discriminant analysis (LDA), and backward interval partial least squares (biPLS). Via the one-versus-rest binary classification approach, a feature subset of 10 wavelengths was selected from each framework yielding comparable balanced accuracy scores (PCA: , LDA: , biPLS: , and ensemble: ) to those of using all features (100%) for cortical bone versus the rest class labels. One hundred percent balanced accuracy scores were generated for bone cement versus the rest. Different feature subsets achieving similar outcomes could be identified due to spectral multicollinearity. Wavelength selection frameworks provide a means to explore domain knowledge and discover important contributors to classification in spectroscopy. The ensemble framework generated a model with improved interpretability and preserved physical interpretation, which serves as the basis to determine illumination wavelengths in optical instrumentation design.
doi_str_mv 10.1117/1.JBO.28.12.121207
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10479945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862199799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3</originalsourceid><addsrcrecordid>eNpVUV1PHCEUJaaN33_AB8NjX2blYwaYJ9MarTYmvrTPhIHLLjo7jDDjZv-92FXTBhJOLuccLvcgdEbJglIqL-ji14-HBVMLysqmjMg9dEgbQSrGFP1SMFG84kKoA3SU8yMhRIlW7KMDLoWsWykP0eYmmTVsYnrKOHq8MS_Qw7CcVjgXYKcQBxwG7IL3cwacwL9VzWAB57GgFLON4xb7mPAUcp7hLxcSDFMwH_KYplUcwQWL85yWkLYn6Ks3fYbT9_MY_bm5_n11W90__Ly7-n5f2ZrwqXKOcC-8MJxL0ja8FE3TWStcJxy4rqy6Fg03telc-RV4RUnTCa48k8oCP0aXO99x7tbgbGkrmV6PKaxN2upogv7_ZggrvYwvmpJatm3dFIdv7w4pPs-QJ70O2ULfmwHinDVTgtG2LeRCZTuqLWPJZVaf71Ci3yLTVJfIikRTpneRFdH5vx1-Sj4y4q9s85eM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862199799</pqid></control><display><type>article</type><title>Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>SPIE_国际光学工程学会期刊</source><creator>Li, Celina L ; Fisher, Carl J ; Komolibus, Katarzyna ; Grygoryev, Konstantin ; Lu, Huihui ; Burke, Ray ; Visentin, Andrea ; Andersson-Engels, Stefan</creator><creatorcontrib>Li, Celina L ; Fisher, Carl J ; Komolibus, Katarzyna ; Grygoryev, Konstantin ; Lu, Huihui ; Burke, Ray ; Visentin, Andrea ; Andersson-Engels, Stefan</creatorcontrib><description>Wavelength selection from a large diffuse reflectance spectroscopy (DRS) dataset enables removal of spectral multicollinearity and thus leads to improved understanding of the feature domain. Feature selection (FS) frameworks are essential to discover the optimal wavelengths for tissue differentiation in DRS-based measurements, which can facilitate the development of compact multispectral optical systems with suitable illumination wavelengths for clinical translation. The aim was to develop an FS methodology to determine wavelengths with optimal discriminative power for orthopedic applications, while providing the frameworks for adaptation to other clinical scenarios. An ensemble framework for FS was developed, validated, and compared with frameworks incorporating conventional algorithms, including principal component analysis (PCA), linear discriminant analysis (LDA), and backward interval partial least squares (biPLS). Via the one-versus-rest binary classification approach, a feature subset of 10 wavelengths was selected from each framework yielding comparable balanced accuracy scores (PCA: , LDA: , biPLS: , and ensemble: ) to those of using all features (100%) for cortical bone versus the rest class labels. One hundred percent balanced accuracy scores were generated for bone cement versus the rest. Different feature subsets achieving similar outcomes could be identified due to spectral multicollinearity. Wavelength selection frameworks provide a means to explore domain knowledge and discover important contributors to classification in spectroscopy. The ensemble framework generated a model with improved interpretability and preserved physical interpretation, which serves as the basis to determine illumination wavelengths in optical instrumentation design.</description><identifier>ISSN: 1083-3668</identifier><identifier>ISSN: 1560-2281</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.28.12.121207</identifier><identifier>PMID: 37674977</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Algorithms ; Discriminant Analysis ; Optical Imaging - instrumentation ; Orthopedic Procedures ; Principal Component Analysis ; Special Section on Selected Topics in Biophotonics: Translating Novel Photonics Technology into Clinical Applications ; Spectrum Analysis - methods</subject><ispartof>Journal of biomedical optics, 2023-12, Vol.28 (12), p.121207</ispartof><rights>2023 The Authors.</rights><rights>2023 The Authors 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3</citedby><cites>FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3</cites><orcidid>0000-0001-6567-3140 ; 0000-0002-2752-0423 ; 0000-0002-7412-8133 ; 0000-0003-3702-4826 ; 0000-0001-5640-3122 ; 0000-0003-4545-6100 ; 0000-0002-7038-202X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10479945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10479945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37674977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Celina L</creatorcontrib><creatorcontrib>Fisher, Carl J</creatorcontrib><creatorcontrib>Komolibus, Katarzyna</creatorcontrib><creatorcontrib>Grygoryev, Konstantin</creatorcontrib><creatorcontrib>Lu, Huihui</creatorcontrib><creatorcontrib>Burke, Ray</creatorcontrib><creatorcontrib>Visentin, Andrea</creatorcontrib><creatorcontrib>Andersson-Engels, Stefan</creatorcontrib><title>Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery</title><title>Journal of biomedical optics</title><addtitle>J Biomed Opt</addtitle><description>Wavelength selection from a large diffuse reflectance spectroscopy (DRS) dataset enables removal of spectral multicollinearity and thus leads to improved understanding of the feature domain. Feature selection (FS) frameworks are essential to discover the optimal wavelengths for tissue differentiation in DRS-based measurements, which can facilitate the development of compact multispectral optical systems with suitable illumination wavelengths for clinical translation. The aim was to develop an FS methodology to determine wavelengths with optimal discriminative power for orthopedic applications, while providing the frameworks for adaptation to other clinical scenarios. An ensemble framework for FS was developed, validated, and compared with frameworks incorporating conventional algorithms, including principal component analysis (PCA), linear discriminant analysis (LDA), and backward interval partial least squares (biPLS). Via the one-versus-rest binary classification approach, a feature subset of 10 wavelengths was selected from each framework yielding comparable balanced accuracy scores (PCA: , LDA: , biPLS: , and ensemble: ) to those of using all features (100%) for cortical bone versus the rest class labels. One hundred percent balanced accuracy scores were generated for bone cement versus the rest. Different feature subsets achieving similar outcomes could be identified due to spectral multicollinearity. Wavelength selection frameworks provide a means to explore domain knowledge and discover important contributors to classification in spectroscopy. The ensemble framework generated a model with improved interpretability and preserved physical interpretation, which serves as the basis to determine illumination wavelengths in optical instrumentation design.</description><subject>Algorithms</subject><subject>Discriminant Analysis</subject><subject>Optical Imaging - instrumentation</subject><subject>Orthopedic Procedures</subject><subject>Principal Component Analysis</subject><subject>Special Section on Selected Topics in Biophotonics: Translating Novel Photonics Technology into Clinical Applications</subject><subject>Spectrum Analysis - methods</subject><issn>1083-3668</issn><issn>1560-2281</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUV1PHCEUJaaN33_AB8NjX2blYwaYJ9MarTYmvrTPhIHLLjo7jDDjZv-92FXTBhJOLuccLvcgdEbJglIqL-ji14-HBVMLysqmjMg9dEgbQSrGFP1SMFG84kKoA3SU8yMhRIlW7KMDLoWsWykP0eYmmTVsYnrKOHq8MS_Qw7CcVjgXYKcQBxwG7IL3cwacwL9VzWAB57GgFLON4xb7mPAUcp7hLxcSDFMwH_KYplUcwQWL85yWkLYn6Ks3fYbT9_MY_bm5_n11W90__Ly7-n5f2ZrwqXKOcC-8MJxL0ja8FE3TWStcJxy4rqy6Fg03telc-RV4RUnTCa48k8oCP0aXO99x7tbgbGkrmV6PKaxN2upogv7_ZggrvYwvmpJatm3dFIdv7w4pPs-QJ70O2ULfmwHinDVTgtG2LeRCZTuqLWPJZVaf71Ci3yLTVJfIikRTpneRFdH5vx1-Sj4y4q9s85eM</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Li, Celina L</creator><creator>Fisher, Carl J</creator><creator>Komolibus, Katarzyna</creator><creator>Grygoryev, Konstantin</creator><creator>Lu, Huihui</creator><creator>Burke, Ray</creator><creator>Visentin, Andrea</creator><creator>Andersson-Engels, Stefan</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6567-3140</orcidid><orcidid>https://orcid.org/0000-0002-2752-0423</orcidid><orcidid>https://orcid.org/0000-0002-7412-8133</orcidid><orcidid>https://orcid.org/0000-0003-3702-4826</orcidid><orcidid>https://orcid.org/0000-0001-5640-3122</orcidid><orcidid>https://orcid.org/0000-0003-4545-6100</orcidid><orcidid>https://orcid.org/0000-0002-7038-202X</orcidid></search><sort><creationdate>20231201</creationdate><title>Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery</title><author>Li, Celina L ; Fisher, Carl J ; Komolibus, Katarzyna ; Grygoryev, Konstantin ; Lu, Huihui ; Burke, Ray ; Visentin, Andrea ; Andersson-Engels, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Discriminant Analysis</topic><topic>Optical Imaging - instrumentation</topic><topic>Orthopedic Procedures</topic><topic>Principal Component Analysis</topic><topic>Special Section on Selected Topics in Biophotonics: Translating Novel Photonics Technology into Clinical Applications</topic><topic>Spectrum Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Celina L</creatorcontrib><creatorcontrib>Fisher, Carl J</creatorcontrib><creatorcontrib>Komolibus, Katarzyna</creatorcontrib><creatorcontrib>Grygoryev, Konstantin</creatorcontrib><creatorcontrib>Lu, Huihui</creatorcontrib><creatorcontrib>Burke, Ray</creatorcontrib><creatorcontrib>Visentin, Andrea</creatorcontrib><creatorcontrib>Andersson-Engels, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Celina L</au><au>Fisher, Carl J</au><au>Komolibus, Katarzyna</au><au>Grygoryev, Konstantin</au><au>Lu, Huihui</au><au>Burke, Ray</au><au>Visentin, Andrea</au><au>Andersson-Engels, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>28</volume><issue>12</issue><spage>121207</spage><pages>121207-</pages><issn>1083-3668</issn><issn>1560-2281</issn><eissn>1560-2281</eissn><abstract>Wavelength selection from a large diffuse reflectance spectroscopy (DRS) dataset enables removal of spectral multicollinearity and thus leads to improved understanding of the feature domain. Feature selection (FS) frameworks are essential to discover the optimal wavelengths for tissue differentiation in DRS-based measurements, which can facilitate the development of compact multispectral optical systems with suitable illumination wavelengths for clinical translation. The aim was to develop an FS methodology to determine wavelengths with optimal discriminative power for orthopedic applications, while providing the frameworks for adaptation to other clinical scenarios. An ensemble framework for FS was developed, validated, and compared with frameworks incorporating conventional algorithms, including principal component analysis (PCA), linear discriminant analysis (LDA), and backward interval partial least squares (biPLS). Via the one-versus-rest binary classification approach, a feature subset of 10 wavelengths was selected from each framework yielding comparable balanced accuracy scores (PCA: , LDA: , biPLS: , and ensemble: ) to those of using all features (100%) for cortical bone versus the rest class labels. One hundred percent balanced accuracy scores were generated for bone cement versus the rest. Different feature subsets achieving similar outcomes could be identified due to spectral multicollinearity. Wavelength selection frameworks provide a means to explore domain knowledge and discover important contributors to classification in spectroscopy. The ensemble framework generated a model with improved interpretability and preserved physical interpretation, which serves as the basis to determine illumination wavelengths in optical instrumentation design.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>37674977</pmid><doi>10.1117/1.JBO.28.12.121207</doi><orcidid>https://orcid.org/0000-0001-6567-3140</orcidid><orcidid>https://orcid.org/0000-0002-2752-0423</orcidid><orcidid>https://orcid.org/0000-0002-7412-8133</orcidid><orcidid>https://orcid.org/0000-0003-3702-4826</orcidid><orcidid>https://orcid.org/0000-0001-5640-3122</orcidid><orcidid>https://orcid.org/0000-0003-4545-6100</orcidid><orcidid>https://orcid.org/0000-0002-7038-202X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2023-12, Vol.28 (12), p.121207
issn 1083-3668
1560-2281
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10479945
source NCBI_PubMed Central(免费); Publicly Available Content Database; SPIE_国际光学工程学会期刊
subjects Algorithms
Discriminant Analysis
Optical Imaging - instrumentation
Orthopedic Procedures
Principal Component Analysis
Special Section on Selected Topics in Biophotonics: Translating Novel Photonics Technology into Clinical Applications
Spectrum Analysis - methods
title Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frameworks%20of%20wavelength%20selection%20in%20diffuse%20reflectance%20spectroscopy%20for%20tissue%20differentiation%20in%20orthopedic%20surgery&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Li,%20Celina%20L&rft.date=2023-12-01&rft.volume=28&rft.issue=12&rft.spage=121207&rft.pages=121207-&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.28.12.121207&rft_dat=%3Cproquest_pubme%3E2862199799%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-dd03f6f6a3370953403a5bcc6db6dedbdbd44653a4abd376ef8105b638f278ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862199799&rft_id=info:pmid/37674977&rfr_iscdi=true