Loading…

RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells

RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intesti...

Full description

Saved in:
Bibliographic Details
Published in:EMBO reports 2023-09, Vol.24 (9), p.e56240-e56240
Main Authors: Joseph, Ivor, Flores, Juan, Farrell, Victoria, Davis, Justin, Bianchi‐Smak, Jared, Feng, Qiang, Goswami, Sayantani, Lin, Xiang, Wei, Zhi, Tong, Kevin, Feng, Zhaohui, Verzi, Michael P, Bonder, Edward M, Goldenring, James R, Gao, Nan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113
cites cdi_FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113
container_end_page e56240
container_issue 9
container_start_page e56240
container_title EMBO reports
container_volume 24
creator Joseph, Ivor
Flores, Juan
Farrell, Victoria
Davis, Justin
Bianchi‐Smak, Jared
Feng, Qiang
Goswami, Sayantani
Lin, Xiang
Wei, Zhi
Tong, Kevin
Feng, Zhaohui
Verzi, Michael P
Bonder, Edward M
Goldenring, James R
Gao, Nan
description RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo , enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues. Synopsis Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal. Induced genetic ablation of Rab11a and Rab11b in mouse intestinal epithelial cells (IECs) cause 100% lethality within 3 days. IECs lacking Rab11a and Rab11b exhibit mitotic spindle defects, cell cycle arrest, and apoptosis. RAB11A and RAB11B interact with mitotic spindle regulatory protein networks including the KIF11 machinery. Graphical Abstract Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal.
doi_str_mv 10.15252/embr.202256240
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10481667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861165998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113</originalsourceid><addsrcrecordid>eNp1kdtLHDEUxkNR6qV97lsJ-NKX1Zxc5vJUVtG2IAhiwQchZDNn1shMMk1mhP73Zt3tVgUhkAPnd76TLx8hX4Adg-KKn2C_iMecca4KLtkHsg-yqGcCympnU3MOt3vkIKUHxpiqy-oj2ROl5FIquU_uruenAHNqfEOfy1Nqgx9j6GjvxjA6S9PgfNMhbSdvRxc8daszYhqdNx3FwY332LlcDjEs0eexSC12XfpEdlvTJfy8uQ_J74vzm7Ofs8urH7_O5pczKwsxzqBihRBGAuMlNqY0ixJlbVqUTKICtAulGlupqpYGQBnRWoPKlBab1nIAcUi-r3WHadFjYzEbMJ0eoutN_KuDcfp1x7t7vQyPGpisoCjKrPBtoxDDnylb071LKw_GY5iS5pWSUoASdUaP3qAPYYr5J1ZUAVCouq4ydbKmbAwpRWy3rwGmn6PTq-j0Nro88fWliS3_L6sMsDWQcssvMf5f_J7mE0zApVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861165998</pqid></control><display><type>article</type><title>RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells</title><source>Open Access: PubMed Central</source><creator>Joseph, Ivor ; Flores, Juan ; Farrell, Victoria ; Davis, Justin ; Bianchi‐Smak, Jared ; Feng, Qiang ; Goswami, Sayantani ; Lin, Xiang ; Wei, Zhi ; Tong, Kevin ; Feng, Zhaohui ; Verzi, Michael P ; Bonder, Edward M ; Goldenring, James R ; Gao, Nan</creator><creatorcontrib>Joseph, Ivor ; Flores, Juan ; Farrell, Victoria ; Davis, Justin ; Bianchi‐Smak, Jared ; Feng, Qiang ; Goswami, Sayantani ; Lin, Xiang ; Wei, Zhi ; Tong, Kevin ; Feng, Zhaohui ; Verzi, Michael P ; Bonder, Edward M ; Goldenring, James R ; Gao, Nan</creatorcontrib><description>RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo , enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues. Synopsis Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal. Induced genetic ablation of Rab11a and Rab11b in mouse intestinal epithelial cells (IECs) cause 100% lethality within 3 days. IECs lacking Rab11a and Rab11b exhibit mitotic spindle defects, cell cycle arrest, and apoptosis. RAB11A and RAB11B interact with mitotic spindle regulatory protein networks including the KIF11 machinery. Graphical Abstract Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202256240</identifier><identifier>PMID: 37424454</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Ablation ; Animal models ; Animals ; Apoptosis ; Cell cycle ; Cell death ; Cell division ; Cell self-renewal ; Cells (biology) ; Defects ; EMBO05 ; EMBO06 ; EMBO34 ; Endosomes ; Epithelial cells ; Epithelium ; Gene deletion ; Homeostasis ; Intestine ; Isoforms ; Kinesin ; Lethality ; Life Sciences ; Mammals ; Mammals - metabolism ; Mice ; Microtubules ; Mitosis ; Progenitor cells ; Protein turnover ; Proteomics ; rab GTP-Binding Proteins - metabolism ; Spindle Apparatus - metabolism ; Spindles ; Stem Cells - metabolism</subject><ispartof>EMBO reports, 2023-09, Vol.24 (9), p.e56240-e56240</ispartof><rights>The Author(s) 2023</rights><rights>2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113</citedby><cites>FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113</cites><orcidid>0009-0002-6371-4644 ; 0000-0003-4264-7438 ; 0009-0007-7893-9383 ; 0000-0002-7833-2940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481667/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37424454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, Ivor</creatorcontrib><creatorcontrib>Flores, Juan</creatorcontrib><creatorcontrib>Farrell, Victoria</creatorcontrib><creatorcontrib>Davis, Justin</creatorcontrib><creatorcontrib>Bianchi‐Smak, Jared</creatorcontrib><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Goswami, Sayantani</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><creatorcontrib>Wei, Zhi</creatorcontrib><creatorcontrib>Tong, Kevin</creatorcontrib><creatorcontrib>Feng, Zhaohui</creatorcontrib><creatorcontrib>Verzi, Michael P</creatorcontrib><creatorcontrib>Bonder, Edward M</creatorcontrib><creatorcontrib>Goldenring, James R</creatorcontrib><creatorcontrib>Gao, Nan</creatorcontrib><title>RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo , enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues. Synopsis Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal. Induced genetic ablation of Rab11a and Rab11b in mouse intestinal epithelial cells (IECs) cause 100% lethality within 3 days. IECs lacking Rab11a and Rab11b exhibit mitotic spindle defects, cell cycle arrest, and apoptosis. RAB11A and RAB11B interact with mitotic spindle regulatory protein networks including the KIF11 machinery. Graphical Abstract Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal.</description><subject>Ablation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Cell self-renewal</subject><subject>Cells (biology)</subject><subject>Defects</subject><subject>EMBO05</subject><subject>EMBO06</subject><subject>EMBO34</subject><subject>Endosomes</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Gene deletion</subject><subject>Homeostasis</subject><subject>Intestine</subject><subject>Isoforms</subject><subject>Kinesin</subject><subject>Lethality</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Mice</subject><subject>Microtubules</subject><subject>Mitosis</subject><subject>Progenitor cells</subject><subject>Protein turnover</subject><subject>Proteomics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindles</subject><subject>Stem Cells - metabolism</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kdtLHDEUxkNR6qV97lsJ-NKX1Zxc5vJUVtG2IAhiwQchZDNn1shMMk1mhP73Zt3tVgUhkAPnd76TLx8hX4Adg-KKn2C_iMecca4KLtkHsg-yqGcCympnU3MOt3vkIKUHxpiqy-oj2ROl5FIquU_uruenAHNqfEOfy1Nqgx9j6GjvxjA6S9PgfNMhbSdvRxc8daszYhqdNx3FwY332LlcDjEs0eexSC12XfpEdlvTJfy8uQ_J74vzm7Ofs8urH7_O5pczKwsxzqBihRBGAuMlNqY0ixJlbVqUTKICtAulGlupqpYGQBnRWoPKlBab1nIAcUi-r3WHadFjYzEbMJ0eoutN_KuDcfp1x7t7vQyPGpisoCjKrPBtoxDDnylb071LKw_GY5iS5pWSUoASdUaP3qAPYYr5J1ZUAVCouq4ydbKmbAwpRWy3rwGmn6PTq-j0Nro88fWliS3_L6sMsDWQcssvMf5f_J7mE0zApVg</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Joseph, Ivor</creator><creator>Flores, Juan</creator><creator>Farrell, Victoria</creator><creator>Davis, Justin</creator><creator>Bianchi‐Smak, Jared</creator><creator>Feng, Qiang</creator><creator>Goswami, Sayantani</creator><creator>Lin, Xiang</creator><creator>Wei, Zhi</creator><creator>Tong, Kevin</creator><creator>Feng, Zhaohui</creator><creator>Verzi, Michael P</creator><creator>Bonder, Edward M</creator><creator>Goldenring, James R</creator><creator>Gao, Nan</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0002-6371-4644</orcidid><orcidid>https://orcid.org/0000-0003-4264-7438</orcidid><orcidid>https://orcid.org/0009-0007-7893-9383</orcidid><orcidid>https://orcid.org/0000-0002-7833-2940</orcidid></search><sort><creationdate>20230906</creationdate><title>RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells</title><author>Joseph, Ivor ; Flores, Juan ; Farrell, Victoria ; Davis, Justin ; Bianchi‐Smak, Jared ; Feng, Qiang ; Goswami, Sayantani ; Lin, Xiang ; Wei, Zhi ; Tong, Kevin ; Feng, Zhaohui ; Verzi, Michael P ; Bonder, Edward M ; Goldenring, James R ; Gao, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Cell self-renewal</topic><topic>Cells (biology)</topic><topic>Defects</topic><topic>EMBO05</topic><topic>EMBO06</topic><topic>EMBO34</topic><topic>Endosomes</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Gene deletion</topic><topic>Homeostasis</topic><topic>Intestine</topic><topic>Isoforms</topic><topic>Kinesin</topic><topic>Lethality</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Mice</topic><topic>Microtubules</topic><topic>Mitosis</topic><topic>Progenitor cells</topic><topic>Protein turnover</topic><topic>Proteomics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindles</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Ivor</creatorcontrib><creatorcontrib>Flores, Juan</creatorcontrib><creatorcontrib>Farrell, Victoria</creatorcontrib><creatorcontrib>Davis, Justin</creatorcontrib><creatorcontrib>Bianchi‐Smak, Jared</creatorcontrib><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Goswami, Sayantani</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><creatorcontrib>Wei, Zhi</creatorcontrib><creatorcontrib>Tong, Kevin</creatorcontrib><creatorcontrib>Feng, Zhaohui</creatorcontrib><creatorcontrib>Verzi, Michael P</creatorcontrib><creatorcontrib>Bonder, Edward M</creatorcontrib><creatorcontrib>Goldenring, James R</creatorcontrib><creatorcontrib>Gao, Nan</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Ivor</au><au>Flores, Juan</au><au>Farrell, Victoria</au><au>Davis, Justin</au><au>Bianchi‐Smak, Jared</au><au>Feng, Qiang</au><au>Goswami, Sayantani</au><au>Lin, Xiang</au><au>Wei, Zhi</au><au>Tong, Kevin</au><au>Feng, Zhaohui</au><au>Verzi, Michael P</au><au>Bonder, Edward M</au><au>Goldenring, James R</au><au>Gao, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2023-09-06</date><risdate>2023</risdate><volume>24</volume><issue>9</issue><spage>e56240</spage><epage>e56240</epage><pages>e56240-e56240</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo , enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues. Synopsis Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal. Induced genetic ablation of Rab11a and Rab11b in mouse intestinal epithelial cells (IECs) cause 100% lethality within 3 days. IECs lacking Rab11a and Rab11b exhibit mitotic spindle defects, cell cycle arrest, and apoptosis. RAB11A and RAB11B interact with mitotic spindle regulatory protein networks including the KIF11 machinery. Graphical Abstract Double knockout of the small GTPases Rab11a and Rab11b in mouse intestinal epithelia leads to mitotic spindle defects in dividing gut progenitor cells, cell cycle arrest and apoptosis, impairing tissue renewal.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37424454</pmid><doi>10.15252/embr.202256240</doi><orcidid>https://orcid.org/0009-0002-6371-4644</orcidid><orcidid>https://orcid.org/0000-0003-4264-7438</orcidid><orcidid>https://orcid.org/0009-0007-7893-9383</orcidid><orcidid>https://orcid.org/0000-0002-7833-2940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2023-09, Vol.24 (9), p.e56240-e56240
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10481667
source Open Access: PubMed Central
subjects Ablation
Animal models
Animals
Apoptosis
Cell cycle
Cell death
Cell division
Cell self-renewal
Cells (biology)
Defects
EMBO05
EMBO06
EMBO34
Endosomes
Epithelial cells
Epithelium
Gene deletion
Homeostasis
Intestine
Isoforms
Kinesin
Lethality
Life Sciences
Mammals
Mammals - metabolism
Mice
Microtubules
Mitosis
Progenitor cells
Protein turnover
Proteomics
rab GTP-Binding Proteins - metabolism
Spindle Apparatus - metabolism
Spindles
Stem Cells - metabolism
title RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAB11A%20and%20RAB11B%20control%20mitotic%20spindle%20function%20in%20intestinal%20epithelial%20progenitor%20cells&rft.jtitle=EMBO%20reports&rft.au=Joseph,%20Ivor&rft.date=2023-09-06&rft.volume=24&rft.issue=9&rft.spage=e56240&rft.epage=e56240&rft.pages=e56240-e56240&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202256240&rft_dat=%3Cproquest_pubme%3E2861165998%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-180633a41027eda7ab7e49afe404e51ecb55dc85894a115a3fcae5a7cedfc2113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861165998&rft_id=info:pmid/37424454&rfr_iscdi=true