Loading…

Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach

Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model us...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2023-08, Vol.15 (17), p.4206
Main Authors: Ruiz Sarrias, Oskitz, Gónzalez Deza, Cristina, Rodríguez Rodríguez, Javier, Arrizibita Iriarte, Olast, Vizcay Atienza, Angel, Zumárraga Lizundia, Teresa, Sayar Beristain, Onintza, Aldaz Pastor, Azucena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions. Methods: We utilized a dataset of 267 gastrointestinal cancer patients, conducting preprocessing, and splitting it into TRAIN and TEST sets (80%:20% ratio). The RandomForest algorithm assessed variable importance based on MeanDecreaseGini coefficient. The bnlearn R library helped design a Bayesian network model using a 10-fold cross-validation on the TRAIN set and the aic-cg method for network structure optimization. The model’s performance was gauged based on accuracy, sensitivity, and specificity, using cross-validation on the TRAIN set and independent validation on the TEST set. Results: The model demonstrated satisfactory performance with an average accuracy of 0.85 (±0.05) and 0.80 on TRAIN and TEST datasets, respectively. The sensitivity and specificity were 0.82 (±0.14) and 0.87 (±0.07) for the TRAIN dataset, and 0.71 and 0.83 for the TEST dataset, respectively. A user-friendly tool was developed for clinical implementation. Conclusions: Despite several limitations, our Bayesian network model demonstrated a high level of accuracy in predicting the risk of developing severe haematological toxicity in gastrointestinal cancer patients receiving 5-FU-based chemotherapy. Future research should aim at model validation in larger cohorts of patients and different clinical settings.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers15174206