Loading…

Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach

Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model us...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2023-08, Vol.15 (17), p.4206
Main Authors: Ruiz Sarrias, Oskitz, Gónzalez Deza, Cristina, Rodríguez Rodríguez, Javier, Arrizibita Iriarte, Olast, Vizcay Atienza, Angel, Zumárraga Lizundia, Teresa, Sayar Beristain, Onintza, Aldaz Pastor, Azucena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c420t-a55e50815ea893958bfbb6a27a04ff28c69864a65109b1da41a52552508e32553
container_end_page
container_issue 17
container_start_page 4206
container_title Cancers
container_volume 15
creator Ruiz Sarrias, Oskitz
Gónzalez Deza, Cristina
Rodríguez Rodríguez, Javier
Arrizibita Iriarte, Olast
Vizcay Atienza, Angel
Zumárraga Lizundia, Teresa
Sayar Beristain, Onintza
Aldaz Pastor, Azucena
description Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions. Methods: We utilized a dataset of 267 gastrointestinal cancer patients, conducting preprocessing, and splitting it into TRAIN and TEST sets (80%:20% ratio). The RandomForest algorithm assessed variable importance based on MeanDecreaseGini coefficient. The bnlearn R library helped design a Bayesian network model using a 10-fold cross-validation on the TRAIN set and the aic-cg method for network structure optimization. The model’s performance was gauged based on accuracy, sensitivity, and specificity, using cross-validation on the TRAIN set and independent validation on the TEST set. Results: The model demonstrated satisfactory performance with an average accuracy of 0.85 (±0.05) and 0.80 on TRAIN and TEST datasets, respectively. The sensitivity and specificity were 0.82 (±0.14) and 0.87 (±0.07) for the TRAIN dataset, and 0.71 and 0.83 for the TEST dataset, respectively. A user-friendly tool was developed for clinical implementation. Conclusions: Despite several limitations, our Bayesian network model demonstrated a high level of accuracy in predicting the risk of developing severe haematological toxicity in gastrointestinal cancer patients receiving 5-FU-based chemotherapy. Future research should aim at model validation in larger cohorts of patients and different clinical settings.
doi_str_mv 10.3390/cancers15174206
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10486471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764264558</galeid><sourcerecordid>A764264558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-a55e50815ea893958bfbb6a27a04ff28c69864a65109b1da41a52552508e32553</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpmaslLlzS2k7sJFzQdtUPpAoq0T1bE2eSdUnsYHsL-yP6n-ttK6AVtiWPPO88nhlNlr1n9KgoGnqswWr0gQlWlZzKV9k-pxXPpWzK1__Ye9lhCDc0raJglazeZntFJWtZ1nw_u7vy2BkdjR3Id7xFj-QCcILoRjcYDSO5dr-NNnFLjCXnEKJ3xkYMKSI5lw8pkCuIBm0MZGU79IPb0UR-tspPIGBHlmucXFyjh3n7iSzICWwxGLDkK8Zfzv8gi3n2DvT6XfamhzHg4dN9kK3OTq-XF_nlt_Mvy8VlrlOhMQchUNCaCYS6KRpRt33bSuAV0LLvea1lk8oDKRhtWtZByUBwkQ6tsUhGcZB9fuTOm3bCTqfcPYxq9mYCv1UOjHrusWatBnerGC0TuWKJ8PGJ4N3PTWqHmkzQOI5g0W2C4rUseFPyuk7SDy-kN27jU_ceVJyVFZXVX9UAIypje5c-1juoWlSy5LIUYsc6-o8q7Q4no53F3qT3ZwHHjwHauxA89n-KZFTtpki9mKLiHqlwuh4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862147067</pqid></control><display><type>article</type><title>Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Ruiz Sarrias, Oskitz ; Gónzalez Deza, Cristina ; Rodríguez Rodríguez, Javier ; Arrizibita Iriarte, Olast ; Vizcay Atienza, Angel ; Zumárraga Lizundia, Teresa ; Sayar Beristain, Onintza ; Aldaz Pastor, Azucena</creator><creatorcontrib>Ruiz Sarrias, Oskitz ; Gónzalez Deza, Cristina ; Rodríguez Rodríguez, Javier ; Arrizibita Iriarte, Olast ; Vizcay Atienza, Angel ; Zumárraga Lizundia, Teresa ; Sayar Beristain, Onintza ; Aldaz Pastor, Azucena</creatorcontrib><description>Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions. Methods: We utilized a dataset of 267 gastrointestinal cancer patients, conducting preprocessing, and splitting it into TRAIN and TEST sets (80%:20% ratio). The RandomForest algorithm assessed variable importance based on MeanDecreaseGini coefficient. The bnlearn R library helped design a Bayesian network model using a 10-fold cross-validation on the TRAIN set and the aic-cg method for network structure optimization. The model’s performance was gauged based on accuracy, sensitivity, and specificity, using cross-validation on the TRAIN set and independent validation on the TEST set. Results: The model demonstrated satisfactory performance with an average accuracy of 0.85 (±0.05) and 0.80 on TRAIN and TEST datasets, respectively. The sensitivity and specificity were 0.82 (±0.14) and 0.87 (±0.07) for the TRAIN dataset, and 0.71 and 0.83 for the TEST dataset, respectively. A user-friendly tool was developed for clinical implementation. Conclusions: Despite several limitations, our Bayesian network model demonstrated a high level of accuracy in predicting the risk of developing severe haematological toxicity in gastrointestinal cancer patients receiving 5-FU-based chemotherapy. Future research should aim at model validation in larger cohorts of patients and different clinical settings.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15174206</identifier><identifier>PMID: 37686482</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>5-Fluorouracil ; Analysis ; Artificial intelligence ; Bayesian analysis ; Blood tests ; Cancer ; Cancer patients ; Cancer therapies ; Chemotherapy ; Complications and side effects ; Data processing ; Datasets ; Gastrointestinal cancer ; Hematology ; Liver ; Metastasis ; Oncology, Experimental ; Patients ; Pharmacokinetics ; Prediction models ; Prognosis ; Quality of life ; Sensitivity analysis ; Software ; Statistical methods ; Toxicity ; Variables</subject><ispartof>Cancers, 2023-08, Vol.15 (17), p.4206</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-a55e50815ea893958bfbb6a27a04ff28c69864a65109b1da41a52552508e32553</cites><orcidid>0000-0003-1899-4384 ; 0000-0001-9386-3654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862147067/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862147067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Ruiz Sarrias, Oskitz</creatorcontrib><creatorcontrib>Gónzalez Deza, Cristina</creatorcontrib><creatorcontrib>Rodríguez Rodríguez, Javier</creatorcontrib><creatorcontrib>Arrizibita Iriarte, Olast</creatorcontrib><creatorcontrib>Vizcay Atienza, Angel</creatorcontrib><creatorcontrib>Zumárraga Lizundia, Teresa</creatorcontrib><creatorcontrib>Sayar Beristain, Onintza</creatorcontrib><creatorcontrib>Aldaz Pastor, Azucena</creatorcontrib><title>Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach</title><title>Cancers</title><description>Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions. Methods: We utilized a dataset of 267 gastrointestinal cancer patients, conducting preprocessing, and splitting it into TRAIN and TEST sets (80%:20% ratio). The RandomForest algorithm assessed variable importance based on MeanDecreaseGini coefficient. The bnlearn R library helped design a Bayesian network model using a 10-fold cross-validation on the TRAIN set and the aic-cg method for network structure optimization. The model’s performance was gauged based on accuracy, sensitivity, and specificity, using cross-validation on the TRAIN set and independent validation on the TEST set. Results: The model demonstrated satisfactory performance with an average accuracy of 0.85 (±0.05) and 0.80 on TRAIN and TEST datasets, respectively. The sensitivity and specificity were 0.82 (±0.14) and 0.87 (±0.07) for the TRAIN dataset, and 0.71 and 0.83 for the TEST dataset, respectively. A user-friendly tool was developed for clinical implementation. Conclusions: Despite several limitations, our Bayesian network model demonstrated a high level of accuracy in predicting the risk of developing severe haematological toxicity in gastrointestinal cancer patients receiving 5-FU-based chemotherapy. Future research should aim at model validation in larger cohorts of patients and different clinical settings.</description><subject>5-Fluorouracil</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Bayesian analysis</subject><subject>Blood tests</subject><subject>Cancer</subject><subject>Cancer patients</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Complications and side effects</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Gastrointestinal cancer</subject><subject>Hematology</subject><subject>Liver</subject><subject>Metastasis</subject><subject>Oncology, Experimental</subject><subject>Patients</subject><subject>Pharmacokinetics</subject><subject>Prediction models</subject><subject>Prognosis</subject><subject>Quality of life</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Toxicity</subject><subject>Variables</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhiMEolXpmaslLlzS2k7sJFzQdtUPpAoq0T1bE2eSdUnsYHsL-yP6n-ttK6AVtiWPPO88nhlNlr1n9KgoGnqswWr0gQlWlZzKV9k-pxXPpWzK1__Ye9lhCDc0raJglazeZntFJWtZ1nw_u7vy2BkdjR3Id7xFj-QCcILoRjcYDSO5dr-NNnFLjCXnEKJ3xkYMKSI5lw8pkCuIBm0MZGU79IPb0UR-tspPIGBHlmucXFyjh3n7iSzICWwxGLDkK8Zfzv8gi3n2DvT6XfamhzHg4dN9kK3OTq-XF_nlt_Mvy8VlrlOhMQchUNCaCYS6KRpRt33bSuAV0LLvea1lk8oDKRhtWtZByUBwkQ6tsUhGcZB9fuTOm3bCTqfcPYxq9mYCv1UOjHrusWatBnerGC0TuWKJ8PGJ4N3PTWqHmkzQOI5g0W2C4rUseFPyuk7SDy-kN27jU_ceVJyVFZXVX9UAIypje5c-1juoWlSy5LIUYsc6-o8q7Q4no53F3qT3ZwHHjwHauxA89n-KZFTtpki9mKLiHqlwuh4</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Ruiz Sarrias, Oskitz</creator><creator>Gónzalez Deza, Cristina</creator><creator>Rodríguez Rodríguez, Javier</creator><creator>Arrizibita Iriarte, Olast</creator><creator>Vizcay Atienza, Angel</creator><creator>Zumárraga Lizundia, Teresa</creator><creator>Sayar Beristain, Onintza</creator><creator>Aldaz Pastor, Azucena</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1899-4384</orcidid><orcidid>https://orcid.org/0000-0001-9386-3654</orcidid></search><sort><creationdate>20230822</creationdate><title>Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach</title><author>Ruiz Sarrias, Oskitz ; Gónzalez Deza, Cristina ; Rodríguez Rodríguez, Javier ; Arrizibita Iriarte, Olast ; Vizcay Atienza, Angel ; Zumárraga Lizundia, Teresa ; Sayar Beristain, Onintza ; Aldaz Pastor, Azucena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-a55e50815ea893958bfbb6a27a04ff28c69864a65109b1da41a52552508e32553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5-Fluorouracil</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Bayesian analysis</topic><topic>Blood tests</topic><topic>Cancer</topic><topic>Cancer patients</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Complications and side effects</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Gastrointestinal cancer</topic><topic>Hematology</topic><topic>Liver</topic><topic>Metastasis</topic><topic>Oncology, Experimental</topic><topic>Patients</topic><topic>Pharmacokinetics</topic><topic>Prediction models</topic><topic>Prognosis</topic><topic>Quality of life</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Toxicity</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz Sarrias, Oskitz</creatorcontrib><creatorcontrib>Gónzalez Deza, Cristina</creatorcontrib><creatorcontrib>Rodríguez Rodríguez, Javier</creatorcontrib><creatorcontrib>Arrizibita Iriarte, Olast</creatorcontrib><creatorcontrib>Vizcay Atienza, Angel</creatorcontrib><creatorcontrib>Zumárraga Lizundia, Teresa</creatorcontrib><creatorcontrib>Sayar Beristain, Onintza</creatorcontrib><creatorcontrib>Aldaz Pastor, Azucena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz Sarrias, Oskitz</au><au>Gónzalez Deza, Cristina</au><au>Rodríguez Rodríguez, Javier</au><au>Arrizibita Iriarte, Olast</au><au>Vizcay Atienza, Angel</au><au>Zumárraga Lizundia, Teresa</au><au>Sayar Beristain, Onintza</au><au>Aldaz Pastor, Azucena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach</atitle><jtitle>Cancers</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>15</volume><issue>17</issue><spage>4206</spage><pages>4206-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions. Methods: We utilized a dataset of 267 gastrointestinal cancer patients, conducting preprocessing, and splitting it into TRAIN and TEST sets (80%:20% ratio). The RandomForest algorithm assessed variable importance based on MeanDecreaseGini coefficient. The bnlearn R library helped design a Bayesian network model using a 10-fold cross-validation on the TRAIN set and the aic-cg method for network structure optimization. The model’s performance was gauged based on accuracy, sensitivity, and specificity, using cross-validation on the TRAIN set and independent validation on the TEST set. Results: The model demonstrated satisfactory performance with an average accuracy of 0.85 (±0.05) and 0.80 on TRAIN and TEST datasets, respectively. The sensitivity and specificity were 0.82 (±0.14) and 0.87 (±0.07) for the TRAIN dataset, and 0.71 and 0.83 for the TEST dataset, respectively. A user-friendly tool was developed for clinical implementation. Conclusions: Despite several limitations, our Bayesian network model demonstrated a high level of accuracy in predicting the risk of developing severe haematological toxicity in gastrointestinal cancer patients receiving 5-FU-based chemotherapy. Future research should aim at model validation in larger cohorts of patients and different clinical settings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37686482</pmid><doi>10.3390/cancers15174206</doi><orcidid>https://orcid.org/0000-0003-1899-4384</orcidid><orcidid>https://orcid.org/0000-0001-9386-3654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-08, Vol.15 (17), p.4206
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10486471
source Open Access: PubMed Central; Publicly Available Content Database
subjects 5-Fluorouracil
Analysis
Artificial intelligence
Bayesian analysis
Blood tests
Cancer
Cancer patients
Cancer therapies
Chemotherapy
Complications and side effects
Data processing
Datasets
Gastrointestinal cancer
Hematology
Liver
Metastasis
Oncology, Experimental
Patients
Pharmacokinetics
Prediction models
Prognosis
Quality of life
Sensitivity analysis
Software
Statistical methods
Toxicity
Variables
title Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Severe%20Haematological%20Toxicity%20in%20Gastrointestinal%20Cancer%20Patients%20Undergoing%205-FU-Based%20Chemotherapy:%20A%20Bayesian%20Network%20Approach&rft.jtitle=Cancers&rft.au=Ruiz%20Sarrias,%20Oskitz&rft.date=2023-08-22&rft.volume=15&rft.issue=17&rft.spage=4206&rft.pages=4206-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15174206&rft_dat=%3Cgale_pubme%3EA764264558%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-a55e50815ea893958bfbb6a27a04ff28c69864a65109b1da41a52552508e32553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862147067&rft_id=info:pmid/37686482&rft_galeid=A764264558&rfr_iscdi=true