Loading…
Study on the Fluorination Process of Sc2O3 by NH4HF2
Research on rare-earth fluorides is of urgent and critical importance for the preparation and emerging applications of high-purity alloys. The fluorination of Sc2O3 by NH4HF2 to fabricate ScF3 is investigated. The effects of the fluorination temperature, time and mass ratio of reactant on the fluori...
Saved in:
Published in: | Materials 2023-08, Vol.16 (17), p.5984 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Research on rare-earth fluorides is of urgent and critical importance for the preparation and emerging applications of high-purity alloys. The fluorination of Sc2O3 by NH4HF2 to fabricate ScF3 is investigated. The effects of the fluorination temperature, time and mass ratio of reactant on the fluorination rate and fluoride are discussed in this work. The fluorination reaction was first confirmed using thermodynamic calculation. The thermal and mass stability of the fluorination process were analyzed by thermogravimetric and differential scanning calorimetric (TG-DSC). The as-obtained products at different fluorination temperatures were characterized by Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results indicated that the fluorination began at room temperature (RT) with the formation of (NH4)3ScF6. With the increase of temperature, the reaction proceeded sequentially through the formation of NH4ScF4, (NH4)2Sc3F11, and finally ScF3. The fluorination rate increased with the increase of fluorination temperature and holding time. ScF3 with a purity of 99.997 wt.% could be obtained by fluorination at 400 °C for 2 h. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16175984 |