Loading…

Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis

Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be invest...

Full description

Saved in:
Bibliographic Details
Published in:Pflügers Archiv 2023-10, Vol.475 (10), p.1161-1176
Main Authors: Rizk, Fatma H., El Saadany, Amira A., Atef, Marwa Mohamed, Abd-Ellatif, Rania Nagi, El-Guindy, Dina M., Abdel Ghafar, Muhammad T., Shalaby, Marwa M., Hafez, Yasser Mostafa, Mashal, Shaimaa Samir Amin, Basha, Eman H., Faheem, Heba, Barhoma, Ramez Abd-Elmoneim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3
cites cdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3
container_end_page 1176
container_issue 10
container_start_page 1161
container_title Pflügers Archiv
container_volume 475
creator Rizk, Fatma H.
El Saadany, Amira A.
Atef, Marwa Mohamed
Abd-Ellatif, Rania Nagi
El-Guindy, Dina M.
Abdel Ghafar, Muhammad T.
Shalaby, Marwa M.
Hafez, Yasser Mostafa
Mashal, Shaimaa Samir Amin
Basha, Eman H.
Faheem, Heba
Barhoma, Ramez Abd-Elmoneim
description Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H 2 O 2 ), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.
doi_str_mv 10.1007/s00424-023-02844-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864386537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEoofCC7BAltiwCdjxLWGDqoqbVAkWdG059uTEJbGD7VQcXopXxOGUclmwsCzNfP7n4r-qHhP8nGAsXySMWcNq3NByWsZqcafaEUabusGE3q12GFNSCynak-pBSlcY44a1zf3qhEouCGm6XfX9cnJep6yz80jPMLkQdQaLUo6w5PAt5GCcr523qylh63QP2RnkYRljWHQeDy_Rx5DBZ6cnBMMAJid07TSag12nTXiP8gjIhHkJvnAJhQHt11x_dtbDAemvLiHtLYqQcogbP7tSdgzexk10DDOE0mNy6WF1b9BTgkc392l1-eb1p_N39cWHt-_Pzy5qwyTP9YCloAOV7SCwFh23DcE9pQBYd1Y0vTXANedWS46p4X2JtowKYGV7RkpLT6tXR91l7WcouM9RT2qJbtbxoIJ26u-Md6Pah2tFMOu6TpKi8OxGIYYva5lMzS4ZmCbtIaxJlR9rW0Y4FwV9-g96Fdboy3yFEoy2glNZqOZImRhSijDcdkOw2gyhjoZQxRDqpyHUJv3kzzlun_xyQAHoEUjLtnmIv2v_R_YH5THHvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864386537</pqid></control><display><type>article</type><title>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</title><source>Springer Link</source><creator>Rizk, Fatma H. ; El Saadany, Amira A. ; Atef, Marwa Mohamed ; Abd-Ellatif, Rania Nagi ; El-Guindy, Dina M. ; Abdel Ghafar, Muhammad T. ; Shalaby, Marwa M. ; Hafez, Yasser Mostafa ; Mashal, Shaimaa Samir Amin ; Basha, Eman H. ; Faheem, Heba ; Barhoma, Ramez Abd-Elmoneim</creator><creatorcontrib>Rizk, Fatma H. ; El Saadany, Amira A. ; Atef, Marwa Mohamed ; Abd-Ellatif, Rania Nagi ; El-Guindy, Dina M. ; Abdel Ghafar, Muhammad T. ; Shalaby, Marwa M. ; Hafez, Yasser Mostafa ; Mashal, Shaimaa Samir Amin ; Basha, Eman H. ; Faheem, Heba ; Barhoma, Ramez Abd-Elmoneim</creatorcontrib><description>Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H 2 O 2 ), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.</description><identifier>ISSN: 0031-6768</identifier><identifier>ISSN: 1432-2013</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-023-02844-6</identifier><identifier>PMID: 37561129</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>8-Hydroxydeoxyguanosine ; Biomedical and Life Sciences ; Biomedicine ; Cell adhesion ; Cell Biology ; Complement component C5a ; Creatinine ; Cytology ; Deoxyguanosine ; Diabetes ; Diabetes mellitus ; Diabetic nephropathy ; Digestive system ; Dynamin ; Fatty acids ; Gastrointestinal tract ; Goblet cells ; Homeostasis ; Human Physiology ; Hydrogen peroxide ; Inflammation ; Integrative Physiology ; Intercellular adhesion molecule 1 ; Intestine ; Membrane potential ; Mitochondria ; Molecular Medicine ; Monocyte chemoattractant protein ; Monocyte chemoattractant protein 1 ; Monocytes ; Nephropathy ; Neurosciences ; Proteins ; Reactive oxygen species ; Receptors ; Renal function ; Villus</subject><ispartof>Pflügers Archiv, 2023-10, Vol.475 (10), p.1161-1176</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</citedby><cites>FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</cites><orcidid>0000-0002-4235-5884 ; 0000-0002-0621-4291 ; 0000-0002-7869-7712 ; 0000-0001-5750-1429 ; 0000-0002-4945-4017 ; 0000-0003-0306-2357 ; 0000-0002-8184-6459 ; 0000-0003-0868-4737 ; 0000-0002-9598-5361 ; 0000-0002-5942-4719 ; 0000-0001-6655-5314 ; 0000-0003-3419-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37561129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizk, Fatma H.</creatorcontrib><creatorcontrib>El Saadany, Amira A.</creatorcontrib><creatorcontrib>Atef, Marwa Mohamed</creatorcontrib><creatorcontrib>Abd-Ellatif, Rania Nagi</creatorcontrib><creatorcontrib>El-Guindy, Dina M.</creatorcontrib><creatorcontrib>Abdel Ghafar, Muhammad T.</creatorcontrib><creatorcontrib>Shalaby, Marwa M.</creatorcontrib><creatorcontrib>Hafez, Yasser Mostafa</creatorcontrib><creatorcontrib>Mashal, Shaimaa Samir Amin</creatorcontrib><creatorcontrib>Basha, Eman H.</creatorcontrib><creatorcontrib>Faheem, Heba</creatorcontrib><creatorcontrib>Barhoma, Ramez Abd-Elmoneim</creatorcontrib><title>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H 2 O 2 ), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.</description><subject>8-Hydroxydeoxyguanosine</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell adhesion</subject><subject>Cell Biology</subject><subject>Complement component C5a</subject><subject>Creatinine</subject><subject>Cytology</subject><subject>Deoxyguanosine</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic nephropathy</subject><subject>Digestive system</subject><subject>Dynamin</subject><subject>Fatty acids</subject><subject>Gastrointestinal tract</subject><subject>Goblet cells</subject><subject>Homeostasis</subject><subject>Human Physiology</subject><subject>Hydrogen peroxide</subject><subject>Inflammation</subject><subject>Integrative Physiology</subject><subject>Intercellular adhesion molecule 1</subject><subject>Intestine</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>Molecular Medicine</subject><subject>Monocyte chemoattractant protein</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Nephropathy</subject><subject>Neurosciences</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Receptors</subject><subject>Renal function</subject><subject>Villus</subject><issn>0031-6768</issn><issn>1432-2013</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kstu1TAQhiMEoofCC7BAltiwCdjxLWGDqoqbVAkWdG059uTEJbGD7VQcXopXxOGUclmwsCzNfP7n4r-qHhP8nGAsXySMWcNq3NByWsZqcafaEUabusGE3q12GFNSCynak-pBSlcY44a1zf3qhEouCGm6XfX9cnJep6yz80jPMLkQdQaLUo6w5PAt5GCcr523qylh63QP2RnkYRljWHQeDy_Rx5DBZ6cnBMMAJid07TSag12nTXiP8gjIhHkJvnAJhQHt11x_dtbDAemvLiHtLYqQcogbP7tSdgzexk10DDOE0mNy6WF1b9BTgkc392l1-eb1p_N39cWHt-_Pzy5qwyTP9YCloAOV7SCwFh23DcE9pQBYd1Y0vTXANedWS46p4X2JtowKYGV7RkpLT6tXR91l7WcouM9RT2qJbtbxoIJ26u-Md6Pah2tFMOu6TpKi8OxGIYYva5lMzS4ZmCbtIaxJlR9rW0Y4FwV9-g96Fdboy3yFEoy2glNZqOZImRhSijDcdkOw2gyhjoZQxRDqpyHUJv3kzzlun_xyQAHoEUjLtnmIv2v_R_YH5THHvw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rizk, Fatma H.</creator><creator>El Saadany, Amira A.</creator><creator>Atef, Marwa Mohamed</creator><creator>Abd-Ellatif, Rania Nagi</creator><creator>El-Guindy, Dina M.</creator><creator>Abdel Ghafar, Muhammad T.</creator><creator>Shalaby, Marwa M.</creator><creator>Hafez, Yasser Mostafa</creator><creator>Mashal, Shaimaa Samir Amin</creator><creator>Basha, Eman H.</creator><creator>Faheem, Heba</creator><creator>Barhoma, Ramez Abd-Elmoneim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4235-5884</orcidid><orcidid>https://orcid.org/0000-0002-0621-4291</orcidid><orcidid>https://orcid.org/0000-0002-7869-7712</orcidid><orcidid>https://orcid.org/0000-0001-5750-1429</orcidid><orcidid>https://orcid.org/0000-0002-4945-4017</orcidid><orcidid>https://orcid.org/0000-0003-0306-2357</orcidid><orcidid>https://orcid.org/0000-0002-8184-6459</orcidid><orcidid>https://orcid.org/0000-0003-0868-4737</orcidid><orcidid>https://orcid.org/0000-0002-9598-5361</orcidid><orcidid>https://orcid.org/0000-0002-5942-4719</orcidid><orcidid>https://orcid.org/0000-0001-6655-5314</orcidid><orcidid>https://orcid.org/0000-0003-3419-0618</orcidid></search><sort><creationdate>20231001</creationdate><title>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</title><author>Rizk, Fatma H. ; El Saadany, Amira A. ; Atef, Marwa Mohamed ; Abd-Ellatif, Rania Nagi ; El-Guindy, Dina M. ; Abdel Ghafar, Muhammad T. ; Shalaby, Marwa M. ; Hafez, Yasser Mostafa ; Mashal, Shaimaa Samir Amin ; Basha, Eman H. ; Faheem, Heba ; Barhoma, Ramez Abd-Elmoneim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>8-Hydroxydeoxyguanosine</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell adhesion</topic><topic>Cell Biology</topic><topic>Complement component C5a</topic><topic>Creatinine</topic><topic>Cytology</topic><topic>Deoxyguanosine</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic nephropathy</topic><topic>Digestive system</topic><topic>Dynamin</topic><topic>Fatty acids</topic><topic>Gastrointestinal tract</topic><topic>Goblet cells</topic><topic>Homeostasis</topic><topic>Human Physiology</topic><topic>Hydrogen peroxide</topic><topic>Inflammation</topic><topic>Integrative Physiology</topic><topic>Intercellular adhesion molecule 1</topic><topic>Intestine</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>Molecular Medicine</topic><topic>Monocyte chemoattractant protein</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Nephropathy</topic><topic>Neurosciences</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Receptors</topic><topic>Renal function</topic><topic>Villus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizk, Fatma H.</creatorcontrib><creatorcontrib>El Saadany, Amira A.</creatorcontrib><creatorcontrib>Atef, Marwa Mohamed</creatorcontrib><creatorcontrib>Abd-Ellatif, Rania Nagi</creatorcontrib><creatorcontrib>El-Guindy, Dina M.</creatorcontrib><creatorcontrib>Abdel Ghafar, Muhammad T.</creatorcontrib><creatorcontrib>Shalaby, Marwa M.</creatorcontrib><creatorcontrib>Hafez, Yasser Mostafa</creatorcontrib><creatorcontrib>Mashal, Shaimaa Samir Amin</creatorcontrib><creatorcontrib>Basha, Eman H.</creatorcontrib><creatorcontrib>Faheem, Heba</creatorcontrib><creatorcontrib>Barhoma, Ramez Abd-Elmoneim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizk, Fatma H.</au><au>El Saadany, Amira A.</au><au>Atef, Marwa Mohamed</au><au>Abd-Ellatif, Rania Nagi</au><au>El-Guindy, Dina M.</au><au>Abdel Ghafar, Muhammad T.</au><au>Shalaby, Marwa M.</au><au>Hafez, Yasser Mostafa</au><au>Mashal, Shaimaa Samir Amin</au><au>Basha, Eman H.</au><au>Faheem, Heba</au><au>Barhoma, Ramez Abd-Elmoneim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>475</volume><issue>10</issue><spage>1161</spage><epage>1176</epage><pages>1161-1176</pages><issn>0031-6768</issn><issn>1432-2013</issn><eissn>1432-2013</eissn><abstract>Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H 2 O 2 ), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37561129</pmid><doi>10.1007/s00424-023-02844-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4235-5884</orcidid><orcidid>https://orcid.org/0000-0002-0621-4291</orcidid><orcidid>https://orcid.org/0000-0002-7869-7712</orcidid><orcidid>https://orcid.org/0000-0001-5750-1429</orcidid><orcidid>https://orcid.org/0000-0002-4945-4017</orcidid><orcidid>https://orcid.org/0000-0003-0306-2357</orcidid><orcidid>https://orcid.org/0000-0002-8184-6459</orcidid><orcidid>https://orcid.org/0000-0003-0868-4737</orcidid><orcidid>https://orcid.org/0000-0002-9598-5361</orcidid><orcidid>https://orcid.org/0000-0002-5942-4719</orcidid><orcidid>https://orcid.org/0000-0001-6655-5314</orcidid><orcidid>https://orcid.org/0000-0003-3419-0618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2023-10, Vol.475 (10), p.1161-1176
issn 0031-6768
1432-2013
1432-2013
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499971
source Springer Link
subjects 8-Hydroxydeoxyguanosine
Biomedical and Life Sciences
Biomedicine
Cell adhesion
Cell Biology
Complement component C5a
Creatinine
Cytology
Deoxyguanosine
Diabetes
Diabetes mellitus
Diabetic nephropathy
Digestive system
Dynamin
Fatty acids
Gastrointestinal tract
Goblet cells
Homeostasis
Human Physiology
Hydrogen peroxide
Inflammation
Integrative Physiology
Intercellular adhesion molecule 1
Intestine
Membrane potential
Mitochondria
Molecular Medicine
Monocyte chemoattractant protein
Monocyte chemoattractant protein 1
Monocytes
Nephropathy
Neurosciences
Proteins
Reactive oxygen species
Receptors
Renal function
Villus
title Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ulinastatin%20ameliorated%20streptozotocin-induced%20diabetic%20nephropathy:%20Potential%20effects%20via%20modulating%20the%20components%20of%20gut-kidney%20axis%20and%20restoring%20mitochondrial%20homeostasis&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Rizk,%20Fatma%20H.&rft.date=2023-10-01&rft.volume=475&rft.issue=10&rft.spage=1161&rft.epage=1176&rft.pages=1161-1176&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-023-02844-6&rft_dat=%3Cproquest_pubme%3E2864386537%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864386537&rft_id=info:pmid/37561129&rfr_iscdi=true