Loading…
Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis
Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be invest...
Saved in:
Published in: | Pflügers Archiv 2023-10, Vol.475 (10), p.1161-1176 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3 |
container_end_page | 1176 |
container_issue | 10 |
container_start_page | 1161 |
container_title | Pflügers Archiv |
container_volume | 475 |
creator | Rizk, Fatma H. El Saadany, Amira A. Atef, Marwa Mohamed Abd-Ellatif, Rania Nagi El-Guindy, Dina M. Abdel Ghafar, Muhammad T. Shalaby, Marwa M. Hafez, Yasser Mostafa Mashal, Shaimaa Samir Amin Basha, Eman H. Faheem, Heba Barhoma, Ramez Abd-Elmoneim |
description | Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H
2
O
2
), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium. |
doi_str_mv | 10.1007/s00424-023-02844-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864386537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEoofCC7BAltiwCdjxLWGDqoqbVAkWdG059uTEJbGD7VQcXopXxOGUclmwsCzNfP7n4r-qHhP8nGAsXySMWcNq3NByWsZqcafaEUabusGE3q12GFNSCynak-pBSlcY44a1zf3qhEouCGm6XfX9cnJep6yz80jPMLkQdQaLUo6w5PAt5GCcr523qylh63QP2RnkYRljWHQeDy_Rx5DBZ6cnBMMAJid07TSag12nTXiP8gjIhHkJvnAJhQHt11x_dtbDAemvLiHtLYqQcogbP7tSdgzexk10DDOE0mNy6WF1b9BTgkc392l1-eb1p_N39cWHt-_Pzy5qwyTP9YCloAOV7SCwFh23DcE9pQBYd1Y0vTXANedWS46p4X2JtowKYGV7RkpLT6tXR91l7WcouM9RT2qJbtbxoIJ26u-Md6Pah2tFMOu6TpKi8OxGIYYva5lMzS4ZmCbtIaxJlR9rW0Y4FwV9-g96Fdboy3yFEoy2glNZqOZImRhSijDcdkOw2gyhjoZQxRDqpyHUJv3kzzlun_xyQAHoEUjLtnmIv2v_R_YH5THHvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864386537</pqid></control><display><type>article</type><title>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</title><source>Springer Link</source><creator>Rizk, Fatma H. ; El Saadany, Amira A. ; Atef, Marwa Mohamed ; Abd-Ellatif, Rania Nagi ; El-Guindy, Dina M. ; Abdel Ghafar, Muhammad T. ; Shalaby, Marwa M. ; Hafez, Yasser Mostafa ; Mashal, Shaimaa Samir Amin ; Basha, Eman H. ; Faheem, Heba ; Barhoma, Ramez Abd-Elmoneim</creator><creatorcontrib>Rizk, Fatma H. ; El Saadany, Amira A. ; Atef, Marwa Mohamed ; Abd-Ellatif, Rania Nagi ; El-Guindy, Dina M. ; Abdel Ghafar, Muhammad T. ; Shalaby, Marwa M. ; Hafez, Yasser Mostafa ; Mashal, Shaimaa Samir Amin ; Basha, Eman H. ; Faheem, Heba ; Barhoma, Ramez Abd-Elmoneim</creatorcontrib><description>Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H
2
O
2
), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.</description><identifier>ISSN: 0031-6768</identifier><identifier>ISSN: 1432-2013</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-023-02844-6</identifier><identifier>PMID: 37561129</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>8-Hydroxydeoxyguanosine ; Biomedical and Life Sciences ; Biomedicine ; Cell adhesion ; Cell Biology ; Complement component C5a ; Creatinine ; Cytology ; Deoxyguanosine ; Diabetes ; Diabetes mellitus ; Diabetic nephropathy ; Digestive system ; Dynamin ; Fatty acids ; Gastrointestinal tract ; Goblet cells ; Homeostasis ; Human Physiology ; Hydrogen peroxide ; Inflammation ; Integrative Physiology ; Intercellular adhesion molecule 1 ; Intestine ; Membrane potential ; Mitochondria ; Molecular Medicine ; Monocyte chemoattractant protein ; Monocyte chemoattractant protein 1 ; Monocytes ; Nephropathy ; Neurosciences ; Proteins ; Reactive oxygen species ; Receptors ; Renal function ; Villus</subject><ispartof>Pflügers Archiv, 2023-10, Vol.475 (10), p.1161-1176</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</citedby><cites>FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</cites><orcidid>0000-0002-4235-5884 ; 0000-0002-0621-4291 ; 0000-0002-7869-7712 ; 0000-0001-5750-1429 ; 0000-0002-4945-4017 ; 0000-0003-0306-2357 ; 0000-0002-8184-6459 ; 0000-0003-0868-4737 ; 0000-0002-9598-5361 ; 0000-0002-5942-4719 ; 0000-0001-6655-5314 ; 0000-0003-3419-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37561129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizk, Fatma H.</creatorcontrib><creatorcontrib>El Saadany, Amira A.</creatorcontrib><creatorcontrib>Atef, Marwa Mohamed</creatorcontrib><creatorcontrib>Abd-Ellatif, Rania Nagi</creatorcontrib><creatorcontrib>El-Guindy, Dina M.</creatorcontrib><creatorcontrib>Abdel Ghafar, Muhammad T.</creatorcontrib><creatorcontrib>Shalaby, Marwa M.</creatorcontrib><creatorcontrib>Hafez, Yasser Mostafa</creatorcontrib><creatorcontrib>Mashal, Shaimaa Samir Amin</creatorcontrib><creatorcontrib>Basha, Eman H.</creatorcontrib><creatorcontrib>Faheem, Heba</creatorcontrib><creatorcontrib>Barhoma, Ramez Abd-Elmoneim</creatorcontrib><title>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H
2
O
2
), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.</description><subject>8-Hydroxydeoxyguanosine</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell adhesion</subject><subject>Cell Biology</subject><subject>Complement component C5a</subject><subject>Creatinine</subject><subject>Cytology</subject><subject>Deoxyguanosine</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic nephropathy</subject><subject>Digestive system</subject><subject>Dynamin</subject><subject>Fatty acids</subject><subject>Gastrointestinal tract</subject><subject>Goblet cells</subject><subject>Homeostasis</subject><subject>Human Physiology</subject><subject>Hydrogen peroxide</subject><subject>Inflammation</subject><subject>Integrative Physiology</subject><subject>Intercellular adhesion molecule 1</subject><subject>Intestine</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>Molecular Medicine</subject><subject>Monocyte chemoattractant protein</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Nephropathy</subject><subject>Neurosciences</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Receptors</subject><subject>Renal function</subject><subject>Villus</subject><issn>0031-6768</issn><issn>1432-2013</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kstu1TAQhiMEoofCC7BAltiwCdjxLWGDqoqbVAkWdG059uTEJbGD7VQcXopXxOGUclmwsCzNfP7n4r-qHhP8nGAsXySMWcNq3NByWsZqcafaEUabusGE3q12GFNSCynak-pBSlcY44a1zf3qhEouCGm6XfX9cnJep6yz80jPMLkQdQaLUo6w5PAt5GCcr523qylh63QP2RnkYRljWHQeDy_Rx5DBZ6cnBMMAJid07TSag12nTXiP8gjIhHkJvnAJhQHt11x_dtbDAemvLiHtLYqQcogbP7tSdgzexk10DDOE0mNy6WF1b9BTgkc392l1-eb1p_N39cWHt-_Pzy5qwyTP9YCloAOV7SCwFh23DcE9pQBYd1Y0vTXANedWS46p4X2JtowKYGV7RkpLT6tXR91l7WcouM9RT2qJbtbxoIJ26u-Md6Pah2tFMOu6TpKi8OxGIYYva5lMzS4ZmCbtIaxJlR9rW0Y4FwV9-g96Fdboy3yFEoy2glNZqOZImRhSijDcdkOw2gyhjoZQxRDqpyHUJv3kzzlun_xyQAHoEUjLtnmIv2v_R_YH5THHvw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rizk, Fatma H.</creator><creator>El Saadany, Amira A.</creator><creator>Atef, Marwa Mohamed</creator><creator>Abd-Ellatif, Rania Nagi</creator><creator>El-Guindy, Dina M.</creator><creator>Abdel Ghafar, Muhammad T.</creator><creator>Shalaby, Marwa M.</creator><creator>Hafez, Yasser Mostafa</creator><creator>Mashal, Shaimaa Samir Amin</creator><creator>Basha, Eman H.</creator><creator>Faheem, Heba</creator><creator>Barhoma, Ramez Abd-Elmoneim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4235-5884</orcidid><orcidid>https://orcid.org/0000-0002-0621-4291</orcidid><orcidid>https://orcid.org/0000-0002-7869-7712</orcidid><orcidid>https://orcid.org/0000-0001-5750-1429</orcidid><orcidid>https://orcid.org/0000-0002-4945-4017</orcidid><orcidid>https://orcid.org/0000-0003-0306-2357</orcidid><orcidid>https://orcid.org/0000-0002-8184-6459</orcidid><orcidid>https://orcid.org/0000-0003-0868-4737</orcidid><orcidid>https://orcid.org/0000-0002-9598-5361</orcidid><orcidid>https://orcid.org/0000-0002-5942-4719</orcidid><orcidid>https://orcid.org/0000-0001-6655-5314</orcidid><orcidid>https://orcid.org/0000-0003-3419-0618</orcidid></search><sort><creationdate>20231001</creationdate><title>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</title><author>Rizk, Fatma H. ; El Saadany, Amira A. ; Atef, Marwa Mohamed ; Abd-Ellatif, Rania Nagi ; El-Guindy, Dina M. ; Abdel Ghafar, Muhammad T. ; Shalaby, Marwa M. ; Hafez, Yasser Mostafa ; Mashal, Shaimaa Samir Amin ; Basha, Eman H. ; Faheem, Heba ; Barhoma, Ramez Abd-Elmoneim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>8-Hydroxydeoxyguanosine</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell adhesion</topic><topic>Cell Biology</topic><topic>Complement component C5a</topic><topic>Creatinine</topic><topic>Cytology</topic><topic>Deoxyguanosine</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic nephropathy</topic><topic>Digestive system</topic><topic>Dynamin</topic><topic>Fatty acids</topic><topic>Gastrointestinal tract</topic><topic>Goblet cells</topic><topic>Homeostasis</topic><topic>Human Physiology</topic><topic>Hydrogen peroxide</topic><topic>Inflammation</topic><topic>Integrative Physiology</topic><topic>Intercellular adhesion molecule 1</topic><topic>Intestine</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>Molecular Medicine</topic><topic>Monocyte chemoattractant protein</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Nephropathy</topic><topic>Neurosciences</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Receptors</topic><topic>Renal function</topic><topic>Villus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizk, Fatma H.</creatorcontrib><creatorcontrib>El Saadany, Amira A.</creatorcontrib><creatorcontrib>Atef, Marwa Mohamed</creatorcontrib><creatorcontrib>Abd-Ellatif, Rania Nagi</creatorcontrib><creatorcontrib>El-Guindy, Dina M.</creatorcontrib><creatorcontrib>Abdel Ghafar, Muhammad T.</creatorcontrib><creatorcontrib>Shalaby, Marwa M.</creatorcontrib><creatorcontrib>Hafez, Yasser Mostafa</creatorcontrib><creatorcontrib>Mashal, Shaimaa Samir Amin</creatorcontrib><creatorcontrib>Basha, Eman H.</creatorcontrib><creatorcontrib>Faheem, Heba</creatorcontrib><creatorcontrib>Barhoma, Ramez Abd-Elmoneim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizk, Fatma H.</au><au>El Saadany, Amira A.</au><au>Atef, Marwa Mohamed</au><au>Abd-Ellatif, Rania Nagi</au><au>El-Guindy, Dina M.</au><au>Abdel Ghafar, Muhammad T.</au><au>Shalaby, Marwa M.</au><au>Hafez, Yasser Mostafa</au><au>Mashal, Shaimaa Samir Amin</au><au>Basha, Eman H.</au><au>Faheem, Heba</au><au>Barhoma, Ramez Abd-Elmoneim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>475</volume><issue>10</issue><spage>1161</spage><epage>1176</epage><pages>1161-1176</pages><issn>0031-6768</issn><issn>1432-2013</issn><eissn>1432-2013</eissn><abstract>Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H
2
O
2
), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37561129</pmid><doi>10.1007/s00424-023-02844-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4235-5884</orcidid><orcidid>https://orcid.org/0000-0002-0621-4291</orcidid><orcidid>https://orcid.org/0000-0002-7869-7712</orcidid><orcidid>https://orcid.org/0000-0001-5750-1429</orcidid><orcidid>https://orcid.org/0000-0002-4945-4017</orcidid><orcidid>https://orcid.org/0000-0003-0306-2357</orcidid><orcidid>https://orcid.org/0000-0002-8184-6459</orcidid><orcidid>https://orcid.org/0000-0003-0868-4737</orcidid><orcidid>https://orcid.org/0000-0002-9598-5361</orcidid><orcidid>https://orcid.org/0000-0002-5942-4719</orcidid><orcidid>https://orcid.org/0000-0001-6655-5314</orcidid><orcidid>https://orcid.org/0000-0003-3419-0618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2023-10, Vol.475 (10), p.1161-1176 |
issn | 0031-6768 1432-2013 1432-2013 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499971 |
source | Springer Link |
subjects | 8-Hydroxydeoxyguanosine Biomedical and Life Sciences Biomedicine Cell adhesion Cell Biology Complement component C5a Creatinine Cytology Deoxyguanosine Diabetes Diabetes mellitus Diabetic nephropathy Digestive system Dynamin Fatty acids Gastrointestinal tract Goblet cells Homeostasis Human Physiology Hydrogen peroxide Inflammation Integrative Physiology Intercellular adhesion molecule 1 Intestine Membrane potential Mitochondria Molecular Medicine Monocyte chemoattractant protein Monocyte chemoattractant protein 1 Monocytes Nephropathy Neurosciences Proteins Reactive oxygen species Receptors Renal function Villus |
title | Ulinastatin ameliorated streptozotocin-induced diabetic nephropathy: Potential effects via modulating the components of gut-kidney axis and restoring mitochondrial homeostasis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ulinastatin%20ameliorated%20streptozotocin-induced%20diabetic%20nephropathy:%20Potential%20effects%20via%20modulating%20the%20components%20of%20gut-kidney%20axis%20and%20restoring%20mitochondrial%20homeostasis&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Rizk,%20Fatma%20H.&rft.date=2023-10-01&rft.volume=475&rft.issue=10&rft.spage=1161&rft.epage=1176&rft.pages=1161-1176&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-023-02844-6&rft_dat=%3Cproquest_pubme%3E2864386537%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-f0763f378f60a695d210b33ee0a9d62bdce5a55da7503c5ba9d8436e4432c77d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864386537&rft_id=info:pmid/37561129&rfr_iscdi=true |