Loading…

Identification and profile of phenolamides with anthracnose resistance potential in tea (Camellia sinensis)

Abstract Tea anthracnose is a prevalent disease in China that can lead to reduced tea production and lower quality, yet there is currently a lack of effective means for controlling this disease. In this study, we identified 46 phenolamides (including 27 isomers) in different tissues and organs of te...

Full description

Saved in:
Bibliographic Details
Published in:Horticulture research 2023-09, Vol.10 (9)
Main Authors: Wang, Wenzhao, Xie, Xingcui, Lv, Yuanyuan, Guan, Haonan, Liu, Lu, Huang, Qian, Bao, Yumeng, Zhou, Jie, Bao, Lu, Gong, Chunmei, Yu, Youben
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Tea anthracnose is a prevalent disease in China that can lead to reduced tea production and lower quality, yet there is currently a lack of effective means for controlling this disease. In this study, we identified 46 phenolamides (including 27 isomers) in different tissues and organs of tea plants based on a developed workflow, and the secondary mass spectra of all these compounds have been documented. It was revealed that tea plants predominantly accumulate protonated aliphatic phenolamides, rather than aromatic phenolamides. The profile of phenolamides indicate that their buildup in tea plants is specific to certain tissues and acyl-acceptors, and this distribution is associated with the extent of phenolamide acyl-modification. Additionally, it was observed that N-Feruloylputrescine (Fer-Put, a type of phenolamides) was responsive to the stimulated accumulation of the tea anthracnose pathogen. The findings of anti-anthracnose experiments in vitro and on tea leaf demonstrated that Fer-Put was capable of significantly inhibiting the growth of anthracnose pathogen colony, effectively prevented tea leaf disease. Furthermore, it was observed that Fer-Put treatment can enhance the antioxidant enzyme activity of tea leaves. TEA002780.1 and TEA013165.1 gene may be responsible for the biosynthesis of Fer-Put in the disease resistance process in tea plants. Through these studies, the types and distribution of phenolamides in tea plants have been elucidated, and Fer-Put's ability to resist anthracnose has been established, providing new insights into the resistance of tea anthracnose.
ISSN:2052-7276
2662-6810
2052-7276
DOI:10.1093/hr/uhad154