Loading…

Unusual Low-Energy Collective Charge Excitations in High-Tc Cuprate Superconductors

Despite decades of intensive experimental and theoretical efforts, the physics of cuprate high-temperature superconductors in general, and, in particular, their normal state, is still under debate. Here, we report our investigation of low-energy charge excitations in the normal state. We find that t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2023-09, Vol.14 (36), p.8060-8068
Main Authors: Silkin, Vyacheslav M, Drechsler, Stefan-Ludwig, Efremov, Dmitry V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite decades of intensive experimental and theoretical efforts, the physics of cuprate high-temperature superconductors in general, and, in particular, their normal state, is still under debate. Here, we report our investigation of low-energy charge excitations in the normal state. We find that the peculiarities of the electronic band structure at low energies have a profound impact on the nature of the intraband collective modes. It gives rise to a new kind of mode with huge intensity and non-Lorentzian spectral function in addition to well-known collective excitations like conventional plasmons and spin fluctuation. We predict two such modes with maximal spectral weight in the nodal and antinodal directions. Additionally, we found a long-living quasi-one-dimensional plasmon becoming an intense soft mode over an extended momentum range along the antinodal direction. These modes might explain some of the resonant inelastic X-ray scattering spectroscopy data.Despite decades of intensive experimental and theoretical efforts, the physics of cuprate high-temperature superconductors in general, and, in particular, their normal state, is still under debate. Here, we report our investigation of low-energy charge excitations in the normal state. We find that the peculiarities of the electronic band structure at low energies have a profound impact on the nature of the intraband collective modes. It gives rise to a new kind of mode with huge intensity and non-Lorentzian spectral function in addition to well-known collective excitations like conventional plasmons and spin fluctuation. We predict two such modes with maximal spectral weight in the nodal and antinodal directions. Additionally, we found a long-living quasi-one-dimensional plasmon becoming an intense soft mode over an extended momentum range along the antinodal direction. These modes might explain some of the resonant inelastic X-ray scattering spectroscopy data.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c01871