Loading…

SUMO1-regulated DBC1 promotes p53-dependent stress-induced apoptosis of lens epithelial cells

Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it play...

Full description

Saved in:
Bibliographic Details
Published in:Aging (Albany, NY.) NY.), 2023-09, Vol.15 (17), p.8812-8832
Main Authors: Wang, Yan, Wang, Jing-Miao, Xiao, Yuan, Hu, Xue-Bin, Zheng, Shu-Yu, Fu, Jia-Ling, Zhang, Lan, Gan, Yu-Wen, Liang, Xing-Miao, Li, David Wan-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.205001