Loading…

Modular Functionalization of Metal‐Organic Frameworks for Nitrogen Recovery from Fresh Urine

Nitrogen recovery from wastewater represents a sustainable route to recycle reactive nitrogen (Nr). It can reduce the demand of producing Nr from the energy‐extensive Haber‐Bosch process and lower the risk of causing eutrophication simultaneously. In this aspect, source‐separated fresh urine is an i...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie (International ed.) 2023-09, Vol.62 (39), p.e202309258-n/a
Main Authors: Guo, Lei, Zhang, Yi, Osella, Silvio, Webb, Samuel M., Yang, Xue‐Jing, Goddard, William A., Hoffmann, Michael R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrogen recovery from wastewater represents a sustainable route to recycle reactive nitrogen (Nr). It can reduce the demand of producing Nr from the energy‐extensive Haber‐Bosch process and lower the risk of causing eutrophication simultaneously. In this aspect, source‐separated fresh urine is an ideal source for nitrogen recovery given its ubiquity and high nitrogen contents. However, current techniques for nitrogen recovery from fresh urine require high energy input and are of low efficiencies because the recovery target, urea, is a challenge to separate. In this work, we developed a novel fresh urine nitrogen recovery treatment process based on modular functionalized metal–organic frameworks (MOFs). Specifically, we employed three distinct modification methods to MOF‐808 and developed robust functional materials for urea hydrolysis, ammonium adsorption, and ammonia monitoring. By integrating these functional materials into our newly developed nitrogen recovery treatment process, we achieved an average of 75 % total nitrogen reduction and 45 % nitrogen recovery with a 30‐minute treatment of synthetic fresh urine. The nitrogen recovery process developed in this work can serve as a sustainable and efficient nutrient management that is suitable for decentralized wastewater treatment. This work also provides a new perspective of implementing versatile advanced materials for water and wastewater treatment. Modular functionalized MOF‐808 derivatives were deliberately designed and integrated in a newly developed nitrogen recovery treatment process targeting fresh urine. Three distinct modification methods were applied for the development of functional MOFs which deliver efficient nitrogen conversion, recovery, detection, and all contributing to high fresh urine nitrogen recovery that is suitable for decentralized wastewater treatment.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202309258