Loading…

Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period

Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2023-09, Vol.111 (18), p.2863-2880.e6
Main Authors: Kourdougli, Nazim, Suresh, Anand, Liu, Benjamin, Juarez, Pablo, Lin, Ashley, Chung, David T., Graven Sams, Anette, Gandal, Michael J., Martínez-Cerdeño, Verónica, Buonomano, Dean V., Hall, Benjamin J., Mombereau, Cédric, Portera-Cailliau, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653
cites cdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653
container_end_page 2880.e6
container_issue 18
container_start_page 2863
container_title Neuron (Cambridge, Mass.)
container_volume 111
creator Kourdougli, Nazim
Suresh, Anand
Liu, Benjamin
Juarez, Pablo
Lin, Ashley
Chung, David T.
Graven Sams, Anette
Gandal, Michael J.
Martínez-Cerdeño, Verónica
Buonomano, Dean V.
Hall, Benjamin J.
Mombereau, Cédric
Portera-Cailliau, Carlos
description Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs. [Display omitted] •PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.
doi_str_mv 10.1016/j.neuron.2023.06.009
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627323004683</els_id><sourcerecordid>2838253034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhHyDkJZsEv-IkGxCqeFSq1A2VurMc53p6R0k82J6p5t_jKqWCTVeWjr977uMQ8p6zmjOuP-3qBQ4xLLVgQtZM14z1L8iGs76tFO_7l2TDul5XWrTyjLxJaccYV03PX5Mz2aqGCy035P5y3sdwhBmWTIOnCZYU4omO4NFhThQX6qPd4gT0ls7ogA6nIroINuGypS7EjM5ORcsQ15GodRmPmE_U-iLSfAfURVy5PUQM41vyytspwbvH95zcfP_26-JndXX94_Li61XllFa54soPDeegmHDNyCww3UjZMS-8U2PTcgd-0FbwtrGy6warWMdbNSorBu0Le06-rL77wzDD6Mqa0U5mH3G28WSCRfP_z4J3ZhuOhrNG9LKVxeHjo0MMvw-QspkxOZgmu0A4JCM62YlGMqkKqlbUxZBSBP_UhzPzEJrZmfVC5iE0w7QpoZWyD__O-FT0N6UCfF4BKJc6IkSTHMLiYMQILpsx4PMd_gAxBq30</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838253034</pqid></control><display><type>article</type><title>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Kourdougli, Nazim ; Suresh, Anand ; Liu, Benjamin ; Juarez, Pablo ; Lin, Ashley ; Chung, David T. ; Graven Sams, Anette ; Gandal, Michael J. ; Martínez-Cerdeño, Verónica ; Buonomano, Dean V. ; Hall, Benjamin J. ; Mombereau, Cédric ; Portera-Cailliau, Carlos</creator><creatorcontrib>Kourdougli, Nazim ; Suresh, Anand ; Liu, Benjamin ; Juarez, Pablo ; Lin, Ashley ; Chung, David T. ; Graven Sams, Anette ; Gandal, Michael J. ; Martínez-Cerdeño, Verónica ; Buonomano, Dean V. ; Hall, Benjamin J. ; Mombereau, Cédric ; Portera-Cailliau, Carlos</creatorcontrib><description>Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs. [Display omitted] •PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2023.06.009</identifier><identifier>PMID: 37451263</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; autism spectrum disorders ; calcium imaging ; Disease Models, Animal ; Fragile X Mental Retardation Protein - genetics ; Fragile X Syndrome - genetics ; Humans ; intellectual disability ; Interneurons - physiology ; Kv3.1 ; medial ganglionic eminence ; Mice ; Mice, Knockout ; Neurons - metabolism ; parvalbumin ; Parvalbumins - genetics ; Parvalbumins - metabolism ; RNA-seq ; tactile defensiveness ; Touch ; transcriptomics ; two-photon</subject><ispartof>Neuron (Cambridge, Mass.), 2023-09, Vol.111 (18), p.2863-2880.e6</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</citedby><cites>FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</cites><orcidid>0000-0001-5735-6380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37451263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kourdougli, Nazim</creatorcontrib><creatorcontrib>Suresh, Anand</creatorcontrib><creatorcontrib>Liu, Benjamin</creatorcontrib><creatorcontrib>Juarez, Pablo</creatorcontrib><creatorcontrib>Lin, Ashley</creatorcontrib><creatorcontrib>Chung, David T.</creatorcontrib><creatorcontrib>Graven Sams, Anette</creatorcontrib><creatorcontrib>Gandal, Michael J.</creatorcontrib><creatorcontrib>Martínez-Cerdeño, Verónica</creatorcontrib><creatorcontrib>Buonomano, Dean V.</creatorcontrib><creatorcontrib>Hall, Benjamin J.</creatorcontrib><creatorcontrib>Mombereau, Cédric</creatorcontrib><creatorcontrib>Portera-Cailliau, Carlos</creatorcontrib><title>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs. [Display omitted] •PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.</description><subject>Animals</subject><subject>autism spectrum disorders</subject><subject>calcium imaging</subject><subject>Disease Models, Animal</subject><subject>Fragile X Mental Retardation Protein - genetics</subject><subject>Fragile X Syndrome - genetics</subject><subject>Humans</subject><subject>intellectual disability</subject><subject>Interneurons - physiology</subject><subject>Kv3.1</subject><subject>medial ganglionic eminence</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurons - metabolism</subject><subject>parvalbumin</subject><subject>Parvalbumins - genetics</subject><subject>Parvalbumins - metabolism</subject><subject>RNA-seq</subject><subject>tactile defensiveness</subject><subject>Touch</subject><subject>transcriptomics</subject><subject>two-photon</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPhHyDkJZsEv-IkGxCqeFSq1A2VurMc53p6R0k82J6p5t_jKqWCTVeWjr977uMQ8p6zmjOuP-3qBQ4xLLVgQtZM14z1L8iGs76tFO_7l2TDul5XWrTyjLxJaccYV03PX5Mz2aqGCy035P5y3sdwhBmWTIOnCZYU4omO4NFhThQX6qPd4gT0ls7ogA6nIroINuGypS7EjM5ORcsQ15GodRmPmE_U-iLSfAfURVy5PUQM41vyytspwbvH95zcfP_26-JndXX94_Li61XllFa54soPDeegmHDNyCww3UjZMS-8U2PTcgd-0FbwtrGy6warWMdbNSorBu0Le06-rL77wzDD6Mqa0U5mH3G28WSCRfP_z4J3ZhuOhrNG9LKVxeHjo0MMvw-QspkxOZgmu0A4JCM62YlGMqkKqlbUxZBSBP_UhzPzEJrZmfVC5iE0w7QpoZWyD__O-FT0N6UCfF4BKJc6IkSTHMLiYMQILpsx4PMd_gAxBq30</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Kourdougli, Nazim</creator><creator>Suresh, Anand</creator><creator>Liu, Benjamin</creator><creator>Juarez, Pablo</creator><creator>Lin, Ashley</creator><creator>Chung, David T.</creator><creator>Graven Sams, Anette</creator><creator>Gandal, Michael J.</creator><creator>Martínez-Cerdeño, Verónica</creator><creator>Buonomano, Dean V.</creator><creator>Hall, Benjamin J.</creator><creator>Mombereau, Cédric</creator><creator>Portera-Cailliau, Carlos</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5735-6380</orcidid></search><sort><creationdate>20230920</creationdate><title>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</title><author>Kourdougli, Nazim ; Suresh, Anand ; Liu, Benjamin ; Juarez, Pablo ; Lin, Ashley ; Chung, David T. ; Graven Sams, Anette ; Gandal, Michael J. ; Martínez-Cerdeño, Verónica ; Buonomano, Dean V. ; Hall, Benjamin J. ; Mombereau, Cédric ; Portera-Cailliau, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>autism spectrum disorders</topic><topic>calcium imaging</topic><topic>Disease Models, Animal</topic><topic>Fragile X Mental Retardation Protein - genetics</topic><topic>Fragile X Syndrome - genetics</topic><topic>Humans</topic><topic>intellectual disability</topic><topic>Interneurons - physiology</topic><topic>Kv3.1</topic><topic>medial ganglionic eminence</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurons - metabolism</topic><topic>parvalbumin</topic><topic>Parvalbumins - genetics</topic><topic>Parvalbumins - metabolism</topic><topic>RNA-seq</topic><topic>tactile defensiveness</topic><topic>Touch</topic><topic>transcriptomics</topic><topic>two-photon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kourdougli, Nazim</creatorcontrib><creatorcontrib>Suresh, Anand</creatorcontrib><creatorcontrib>Liu, Benjamin</creatorcontrib><creatorcontrib>Juarez, Pablo</creatorcontrib><creatorcontrib>Lin, Ashley</creatorcontrib><creatorcontrib>Chung, David T.</creatorcontrib><creatorcontrib>Graven Sams, Anette</creatorcontrib><creatorcontrib>Gandal, Michael J.</creatorcontrib><creatorcontrib>Martínez-Cerdeño, Verónica</creatorcontrib><creatorcontrib>Buonomano, Dean V.</creatorcontrib><creatorcontrib>Hall, Benjamin J.</creatorcontrib><creatorcontrib>Mombereau, Cédric</creatorcontrib><creatorcontrib>Portera-Cailliau, Carlos</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kourdougli, Nazim</au><au>Suresh, Anand</au><au>Liu, Benjamin</au><au>Juarez, Pablo</au><au>Lin, Ashley</au><au>Chung, David T.</au><au>Graven Sams, Anette</au><au>Gandal, Michael J.</au><au>Martínez-Cerdeño, Verónica</au><au>Buonomano, Dean V.</au><au>Hall, Benjamin J.</au><au>Mombereau, Cédric</au><au>Portera-Cailliau, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2023-09-20</date><risdate>2023</risdate><volume>111</volume><issue>18</issue><spage>2863</spage><epage>2880.e6</epage><pages>2863-2880.e6</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs. [Display omitted] •PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37451263</pmid><doi>10.1016/j.neuron.2023.06.009</doi><orcidid>https://orcid.org/0000-0001-5735-6380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2023-09, Vol.111 (18), p.2863-2880.e6
issn 0896-6273
1097-4199
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529373
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
autism spectrum disorders
calcium imaging
Disease Models, Animal
Fragile X Mental Retardation Protein - genetics
Fragile X Syndrome - genetics
Humans
intellectual disability
Interneurons - physiology
Kv3.1
medial ganglionic eminence
Mice
Mice, Knockout
Neurons - metabolism
parvalbumin
Parvalbumins - genetics
Parvalbumins - metabolism
RNA-seq
tactile defensiveness
Touch
transcriptomics
two-photon
title Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20sensory%20deficits%20in%20fragile%20X%20mice%20by%20increasing%20cortical%20interneuron%20activity%20after%20the%20critical%20period&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Kourdougli,%20Nazim&rft.date=2023-09-20&rft.volume=111&rft.issue=18&rft.spage=2863&rft.epage=2880.e6&rft.pages=2863-2880.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2023.06.009&rft_dat=%3Cproquest_pubme%3E2838253034%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838253034&rft_id=info:pmid/37451263&rfr_iscdi=true