Loading…
Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period
Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2023-09, Vol.111 (18), p.2863-2880.e6 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653 |
---|---|
cites | cdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653 |
container_end_page | 2880.e6 |
container_issue | 18 |
container_start_page | 2863 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 111 |
creator | Kourdougli, Nazim Suresh, Anand Liu, Benjamin Juarez, Pablo Lin, Ashley Chung, David T. Graven Sams, Anette Gandal, Michael J. Martínez-Cerdeño, Verónica Buonomano, Dean V. Hall, Benjamin J. Mombereau, Cédric Portera-Cailliau, Carlos |
description | Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
[Display omitted]
•PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice
Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model. |
doi_str_mv | 10.1016/j.neuron.2023.06.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627323004683</els_id><sourcerecordid>2838253034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhHyDkJZsEv-IkGxCqeFSq1A2VurMc53p6R0k82J6p5t_jKqWCTVeWjr977uMQ8p6zmjOuP-3qBQ4xLLVgQtZM14z1L8iGs76tFO_7l2TDul5XWrTyjLxJaccYV03PX5Mz2aqGCy035P5y3sdwhBmWTIOnCZYU4omO4NFhThQX6qPd4gT0ls7ogA6nIroINuGypS7EjM5ORcsQ15GodRmPmE_U-iLSfAfURVy5PUQM41vyytspwbvH95zcfP_26-JndXX94_Li61XllFa54soPDeegmHDNyCww3UjZMS-8U2PTcgd-0FbwtrGy6warWMdbNSorBu0Le06-rL77wzDD6Mqa0U5mH3G28WSCRfP_z4J3ZhuOhrNG9LKVxeHjo0MMvw-QspkxOZgmu0A4JCM62YlGMqkKqlbUxZBSBP_UhzPzEJrZmfVC5iE0w7QpoZWyD__O-FT0N6UCfF4BKJc6IkSTHMLiYMQILpsx4PMd_gAxBq30</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838253034</pqid></control><display><type>article</type><title>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Kourdougli, Nazim ; Suresh, Anand ; Liu, Benjamin ; Juarez, Pablo ; Lin, Ashley ; Chung, David T. ; Graven Sams, Anette ; Gandal, Michael J. ; Martínez-Cerdeño, Verónica ; Buonomano, Dean V. ; Hall, Benjamin J. ; Mombereau, Cédric ; Portera-Cailliau, Carlos</creator><creatorcontrib>Kourdougli, Nazim ; Suresh, Anand ; Liu, Benjamin ; Juarez, Pablo ; Lin, Ashley ; Chung, David T. ; Graven Sams, Anette ; Gandal, Michael J. ; Martínez-Cerdeño, Verónica ; Buonomano, Dean V. ; Hall, Benjamin J. ; Mombereau, Cédric ; Portera-Cailliau, Carlos</creatorcontrib><description>Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
[Display omitted]
•PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice
Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2023.06.009</identifier><identifier>PMID: 37451263</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; autism spectrum disorders ; calcium imaging ; Disease Models, Animal ; Fragile X Mental Retardation Protein - genetics ; Fragile X Syndrome - genetics ; Humans ; intellectual disability ; Interneurons - physiology ; Kv3.1 ; medial ganglionic eminence ; Mice ; Mice, Knockout ; Neurons - metabolism ; parvalbumin ; Parvalbumins - genetics ; Parvalbumins - metabolism ; RNA-seq ; tactile defensiveness ; Touch ; transcriptomics ; two-photon</subject><ispartof>Neuron (Cambridge, Mass.), 2023-09, Vol.111 (18), p.2863-2880.e6</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</citedby><cites>FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</cites><orcidid>0000-0001-5735-6380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37451263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kourdougli, Nazim</creatorcontrib><creatorcontrib>Suresh, Anand</creatorcontrib><creatorcontrib>Liu, Benjamin</creatorcontrib><creatorcontrib>Juarez, Pablo</creatorcontrib><creatorcontrib>Lin, Ashley</creatorcontrib><creatorcontrib>Chung, David T.</creatorcontrib><creatorcontrib>Graven Sams, Anette</creatorcontrib><creatorcontrib>Gandal, Michael J.</creatorcontrib><creatorcontrib>Martínez-Cerdeño, Verónica</creatorcontrib><creatorcontrib>Buonomano, Dean V.</creatorcontrib><creatorcontrib>Hall, Benjamin J.</creatorcontrib><creatorcontrib>Mombereau, Cédric</creatorcontrib><creatorcontrib>Portera-Cailliau, Carlos</creatorcontrib><title>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
[Display omitted]
•PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice
Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.</description><subject>Animals</subject><subject>autism spectrum disorders</subject><subject>calcium imaging</subject><subject>Disease Models, Animal</subject><subject>Fragile X Mental Retardation Protein - genetics</subject><subject>Fragile X Syndrome - genetics</subject><subject>Humans</subject><subject>intellectual disability</subject><subject>Interneurons - physiology</subject><subject>Kv3.1</subject><subject>medial ganglionic eminence</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurons - metabolism</subject><subject>parvalbumin</subject><subject>Parvalbumins - genetics</subject><subject>Parvalbumins - metabolism</subject><subject>RNA-seq</subject><subject>tactile defensiveness</subject><subject>Touch</subject><subject>transcriptomics</subject><subject>two-photon</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPhHyDkJZsEv-IkGxCqeFSq1A2VurMc53p6R0k82J6p5t_jKqWCTVeWjr977uMQ8p6zmjOuP-3qBQ4xLLVgQtZM14z1L8iGs76tFO_7l2TDul5XWrTyjLxJaccYV03PX5Mz2aqGCy035P5y3sdwhBmWTIOnCZYU4omO4NFhThQX6qPd4gT0ls7ogA6nIroINuGypS7EjM5ORcsQ15GodRmPmE_U-iLSfAfURVy5PUQM41vyytspwbvH95zcfP_26-JndXX94_Li61XllFa54soPDeegmHDNyCww3UjZMS-8U2PTcgd-0FbwtrGy6warWMdbNSorBu0Le06-rL77wzDD6Mqa0U5mH3G28WSCRfP_z4J3ZhuOhrNG9LKVxeHjo0MMvw-QspkxOZgmu0A4JCM62YlGMqkKqlbUxZBSBP_UhzPzEJrZmfVC5iE0w7QpoZWyD__O-FT0N6UCfF4BKJc6IkSTHMLiYMQILpsx4PMd_gAxBq30</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Kourdougli, Nazim</creator><creator>Suresh, Anand</creator><creator>Liu, Benjamin</creator><creator>Juarez, Pablo</creator><creator>Lin, Ashley</creator><creator>Chung, David T.</creator><creator>Graven Sams, Anette</creator><creator>Gandal, Michael J.</creator><creator>Martínez-Cerdeño, Verónica</creator><creator>Buonomano, Dean V.</creator><creator>Hall, Benjamin J.</creator><creator>Mombereau, Cédric</creator><creator>Portera-Cailliau, Carlos</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5735-6380</orcidid></search><sort><creationdate>20230920</creationdate><title>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</title><author>Kourdougli, Nazim ; Suresh, Anand ; Liu, Benjamin ; Juarez, Pablo ; Lin, Ashley ; Chung, David T. ; Graven Sams, Anette ; Gandal, Michael J. ; Martínez-Cerdeño, Verónica ; Buonomano, Dean V. ; Hall, Benjamin J. ; Mombereau, Cédric ; Portera-Cailliau, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>autism spectrum disorders</topic><topic>calcium imaging</topic><topic>Disease Models, Animal</topic><topic>Fragile X Mental Retardation Protein - genetics</topic><topic>Fragile X Syndrome - genetics</topic><topic>Humans</topic><topic>intellectual disability</topic><topic>Interneurons - physiology</topic><topic>Kv3.1</topic><topic>medial ganglionic eminence</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurons - metabolism</topic><topic>parvalbumin</topic><topic>Parvalbumins - genetics</topic><topic>Parvalbumins - metabolism</topic><topic>RNA-seq</topic><topic>tactile defensiveness</topic><topic>Touch</topic><topic>transcriptomics</topic><topic>two-photon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kourdougli, Nazim</creatorcontrib><creatorcontrib>Suresh, Anand</creatorcontrib><creatorcontrib>Liu, Benjamin</creatorcontrib><creatorcontrib>Juarez, Pablo</creatorcontrib><creatorcontrib>Lin, Ashley</creatorcontrib><creatorcontrib>Chung, David T.</creatorcontrib><creatorcontrib>Graven Sams, Anette</creatorcontrib><creatorcontrib>Gandal, Michael J.</creatorcontrib><creatorcontrib>Martínez-Cerdeño, Verónica</creatorcontrib><creatorcontrib>Buonomano, Dean V.</creatorcontrib><creatorcontrib>Hall, Benjamin J.</creatorcontrib><creatorcontrib>Mombereau, Cédric</creatorcontrib><creatorcontrib>Portera-Cailliau, Carlos</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kourdougli, Nazim</au><au>Suresh, Anand</au><au>Liu, Benjamin</au><au>Juarez, Pablo</au><au>Lin, Ashley</au><au>Chung, David T.</au><au>Graven Sams, Anette</au><au>Gandal, Michael J.</au><au>Martínez-Cerdeño, Verónica</au><au>Buonomano, Dean V.</au><au>Hall, Benjamin J.</au><au>Mombereau, Cédric</au><au>Portera-Cailliau, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2023-09-20</date><risdate>2023</risdate><volume>111</volume><issue>18</issue><spage>2863</spage><epage>2880.e6</epage><pages>2863-2880.e6</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
[Display omitted]
•PV interneurons and MGE precursors are hypoactive in developing S1 of Fmr1 KO mice•PV neurons are decoupled from pyramidal cells until the second postnatal week•Lower density of PV cells in S1 of Fmr1 KO mice and in postmortem FXS human tissue•Boosting PV activity in S1 ameliorates tactile defensiveness in Fmr1 KO mice
Kourdougli et al. use all-optical in vivo approaches to show that parvalbumin interneurons are hypoactive and decoupled from excitatory partners in the developing neocortex of fragile X syndrome model mice. Restoring the activity of remaining PV cells after the second postnatal week (not earlier) ameliorates sensory hypersensitivity in the mouse model.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37451263</pmid><doi>10.1016/j.neuron.2023.06.009</doi><orcidid>https://orcid.org/0000-0001-5735-6380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2023-09, Vol.111 (18), p.2863-2880.e6 |
issn | 0896-6273 1097-4199 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529373 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals autism spectrum disorders calcium imaging Disease Models, Animal Fragile X Mental Retardation Protein - genetics Fragile X Syndrome - genetics Humans intellectual disability Interneurons - physiology Kv3.1 medial ganglionic eminence Mice Mice, Knockout Neurons - metabolism parvalbumin Parvalbumins - genetics Parvalbumins - metabolism RNA-seq tactile defensiveness Touch transcriptomics two-photon |
title | Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20sensory%20deficits%20in%20fragile%20X%20mice%20by%20increasing%20cortical%20interneuron%20activity%20after%20the%20critical%20period&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Kourdougli,%20Nazim&rft.date=2023-09-20&rft.volume=111&rft.issue=18&rft.spage=2863&rft.epage=2880.e6&rft.pages=2863-2880.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2023.06.009&rft_dat=%3Cproquest_pubme%3E2838253034%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-14fb511e402c5d0ae0653380f2fc4d571cefb6a2175a388ba408174d4a2b6f653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838253034&rft_id=info:pmid/37451263&rfr_iscdi=true |