Loading…

A machine learning approach that measures pH using acidoCEST MRI of iopamidol

Tumor acidosis is an important biomarker for aggressive tumors, and extracellular pH (pHe) of the tumor microenvironment can be used to predict and evaluate tumor responses to chemotherapy and immunotherapy. AcidoCEST MRI measures tumor pHe by exploiting the pH-dependent chemical exchange saturation...

Full description

Saved in:
Bibliographic Details
Published in:NMR in biomedicine 2023-10, Vol.36 (10), p.e4986-e4986
Main Authors: Li, Tianzhe, Cárdenas-Rodríguez, Julio, Trakru, Priya N, Pagel, Mark D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93
cites cdi_FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93
container_end_page e4986
container_issue 10
container_start_page e4986
container_title NMR in biomedicine
container_volume 36
creator Li, Tianzhe
Cárdenas-Rodríguez, Julio
Trakru, Priya N
Pagel, Mark D
description Tumor acidosis is an important biomarker for aggressive tumors, and extracellular pH (pHe) of the tumor microenvironment can be used to predict and evaluate tumor responses to chemotherapy and immunotherapy. AcidoCEST MRI measures tumor pHe by exploiting the pH-dependent chemical exchange saturation transfer (CEST) effect of iopamidol, an exogenous CT agent repurposed for CEST MRI. However, all pH fitting methodologies for acidoCEST MRI data have limitations. Herein we present results of the application of machine learning for extracting pH values from CEST Z-spectra of iopamidol. We acquired 36,000 experimental CEST spectra from 200 phantoms of iopamidol prepared at five concentrations, five T values, and eight pH values at five temperatures, acquired at six saturation powers and six saturation times. We also acquired T , T , B RF power, and B magnetic field strength supplementary MR information. These MR images were used to train and validate machine learning models for the tasks of pH classification and pH regression. Specifically, we tested the L1-penalized logistic regression classification (LRC) model and the random forest classification (RFC) model for classifying the CEST Z-spectra for thresholds at pH 6.5 and 7.0. Our results showed that both RFC and LRC were effective for pH classification, although the RFC model achieved higher predictive value, and improved the accuracy of classification accuracy with CEST Z-spectra with a more limited set of saturation frequencies. Furthermore, we used LASSO and random forest regression (RFR) models to explore pH regression, which showed that the RFR model achieved higher accuracy and precision for estimating pH across the entire pH range of 6.2-7.3, especially when using a more limited set of features. Based on these results, machine learning for analysis of acidoCEST MRI is promising for eventual in vivo determination of tumor pHe.
doi_str_mv 10.1002/nbm.4986
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823494943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlbBXyABN26m5jWPrKSUagstgtZ1SDNJO2VmMiYzgv_eVGt9cBcX7vk4nMsB4BKjIUaI3Narash4lhyBPkacR5hxcgz6iMckoixDPXDm_RYhlDFKTkGPpiRDKcF9sBjBSqpNUWtYaunqol5D2TTOhiNsN7KFlZa-c9rDZgo7_6mrIrfjyfMSLp5m0BpY2EZW4VaegxMjS68v9nsAXu4ny_E0mj8-zMajeaRokraRiWWcc8oMVkSpnDFteM55mus4wwkjUpsYY4MJxZqyWKcqM5yuJM05UkhyOgB3X75Nt6p0rnTdOlmKxhWVdO_CykL8VepiI9b2TWAUE55mO4ebvYOzr532ragKr3RZylrbzguSEcp4GBrQ63_o1nauDv8FKmGUJSlNfgyVs947bQ5pMBK7kkQoSexKCujV7_QH8LsV-gG8fox4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864346736</pqid></control><display><type>article</type><title>A machine learning approach that measures pH using acidoCEST MRI of iopamidol</title><source>Wiley</source><creator>Li, Tianzhe ; Cárdenas-Rodríguez, Julio ; Trakru, Priya N ; Pagel, Mark D</creator><creatorcontrib>Li, Tianzhe ; Cárdenas-Rodríguez, Julio ; Trakru, Priya N ; Pagel, Mark D</creatorcontrib><description>Tumor acidosis is an important biomarker for aggressive tumors, and extracellular pH (pHe) of the tumor microenvironment can be used to predict and evaluate tumor responses to chemotherapy and immunotherapy. AcidoCEST MRI measures tumor pHe by exploiting the pH-dependent chemical exchange saturation transfer (CEST) effect of iopamidol, an exogenous CT agent repurposed for CEST MRI. However, all pH fitting methodologies for acidoCEST MRI data have limitations. Herein we present results of the application of machine learning for extracting pH values from CEST Z-spectra of iopamidol. We acquired 36,000 experimental CEST spectra from 200 phantoms of iopamidol prepared at five concentrations, five T values, and eight pH values at five temperatures, acquired at six saturation powers and six saturation times. We also acquired T , T , B RF power, and B magnetic field strength supplementary MR information. These MR images were used to train and validate machine learning models for the tasks of pH classification and pH regression. Specifically, we tested the L1-penalized logistic regression classification (LRC) model and the random forest classification (RFC) model for classifying the CEST Z-spectra for thresholds at pH 6.5 and 7.0. Our results showed that both RFC and LRC were effective for pH classification, although the RFC model achieved higher predictive value, and improved the accuracy of classification accuracy with CEST Z-spectra with a more limited set of saturation frequencies. Furthermore, we used LASSO and random forest regression (RFR) models to explore pH regression, which showed that the RFR model achieved higher accuracy and precision for estimating pH across the entire pH range of 6.2-7.3, especially when using a more limited set of features. Based on these results, machine learning for analysis of acidoCEST MRI is promising for eventual in vivo determination of tumor pHe.</description><identifier>ISSN: 0952-3480</identifier><identifier>ISSN: 1099-1492</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4986</identifier><identifier>PMID: 37280721</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Acidosis ; Biological products ; Biomarkers ; Chemotherapy ; Classification ; Field strength ; Immunotherapy ; In vivo methods and tests ; Learning algorithms ; Machine learning ; Magnetic fields ; Magnetic resonance imaging ; Model accuracy ; pH effects ; Regression analysis ; Regression models ; Saturation ; Spectra ; Tumor microenvironment ; Tumors</subject><ispartof>NMR in biomedicine, 2023-10, Vol.36 (10), p.e4986-e4986</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93</citedby><cites>FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93</cites><orcidid>0000-0002-8109-3995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37280721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tianzhe</creatorcontrib><creatorcontrib>Cárdenas-Rodríguez, Julio</creatorcontrib><creatorcontrib>Trakru, Priya N</creatorcontrib><creatorcontrib>Pagel, Mark D</creatorcontrib><title>A machine learning approach that measures pH using acidoCEST MRI of iopamidol</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>Tumor acidosis is an important biomarker for aggressive tumors, and extracellular pH (pHe) of the tumor microenvironment can be used to predict and evaluate tumor responses to chemotherapy and immunotherapy. AcidoCEST MRI measures tumor pHe by exploiting the pH-dependent chemical exchange saturation transfer (CEST) effect of iopamidol, an exogenous CT agent repurposed for CEST MRI. However, all pH fitting methodologies for acidoCEST MRI data have limitations. Herein we present results of the application of machine learning for extracting pH values from CEST Z-spectra of iopamidol. We acquired 36,000 experimental CEST spectra from 200 phantoms of iopamidol prepared at five concentrations, five T values, and eight pH values at five temperatures, acquired at six saturation powers and six saturation times. We also acquired T , T , B RF power, and B magnetic field strength supplementary MR information. These MR images were used to train and validate machine learning models for the tasks of pH classification and pH regression. Specifically, we tested the L1-penalized logistic regression classification (LRC) model and the random forest classification (RFC) model for classifying the CEST Z-spectra for thresholds at pH 6.5 and 7.0. Our results showed that both RFC and LRC were effective for pH classification, although the RFC model achieved higher predictive value, and improved the accuracy of classification accuracy with CEST Z-spectra with a more limited set of saturation frequencies. Furthermore, we used LASSO and random forest regression (RFR) models to explore pH regression, which showed that the RFR model achieved higher accuracy and precision for estimating pH across the entire pH range of 6.2-7.3, especially when using a more limited set of features. Based on these results, machine learning for analysis of acidoCEST MRI is promising for eventual in vivo determination of tumor pHe.</description><subject>Accuracy</subject><subject>Acidosis</subject><subject>Biological products</subject><subject>Biomarkers</subject><subject>Chemotherapy</subject><subject>Classification</subject><subject>Field strength</subject><subject>Immunotherapy</subject><subject>In vivo methods and tests</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Model accuracy</subject><subject>pH effects</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Saturation</subject><subject>Spectra</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>0952-3480</issn><issn>1099-1492</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLAzEUhYMotlbBXyABN26m5jWPrKSUagstgtZ1SDNJO2VmMiYzgv_eVGt9cBcX7vk4nMsB4BKjIUaI3Narash4lhyBPkacR5hxcgz6iMckoixDPXDm_RYhlDFKTkGPpiRDKcF9sBjBSqpNUWtYaunqol5D2TTOhiNsN7KFlZa-c9rDZgo7_6mrIrfjyfMSLp5m0BpY2EZW4VaegxMjS68v9nsAXu4ny_E0mj8-zMajeaRokraRiWWcc8oMVkSpnDFteM55mus4wwkjUpsYY4MJxZqyWKcqM5yuJM05UkhyOgB3X75Nt6p0rnTdOlmKxhWVdO_CykL8VepiI9b2TWAUE55mO4ebvYOzr532ragKr3RZylrbzguSEcp4GBrQ63_o1nauDv8FKmGUJSlNfgyVs947bQ5pMBK7kkQoSexKCujV7_QH8LsV-gG8fox4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Tianzhe</creator><creator>Cárdenas-Rodríguez, Julio</creator><creator>Trakru, Priya N</creator><creator>Pagel, Mark D</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8109-3995</orcidid></search><sort><creationdate>20231001</creationdate><title>A machine learning approach that measures pH using acidoCEST MRI of iopamidol</title><author>Li, Tianzhe ; Cárdenas-Rodríguez, Julio ; Trakru, Priya N ; Pagel, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acidosis</topic><topic>Biological products</topic><topic>Biomarkers</topic><topic>Chemotherapy</topic><topic>Classification</topic><topic>Field strength</topic><topic>Immunotherapy</topic><topic>In vivo methods and tests</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Model accuracy</topic><topic>pH effects</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Saturation</topic><topic>Spectra</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianzhe</creatorcontrib><creatorcontrib>Cárdenas-Rodríguez, Julio</creatorcontrib><creatorcontrib>Trakru, Priya N</creatorcontrib><creatorcontrib>Pagel, Mark D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianzhe</au><au>Cárdenas-Rodríguez, Julio</au><au>Trakru, Priya N</au><au>Pagel, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning approach that measures pH using acidoCEST MRI of iopamidol</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>10</issue><spage>e4986</spage><epage>e4986</epage><pages>e4986-e4986</pages><issn>0952-3480</issn><issn>1099-1492</issn><eissn>1099-1492</eissn><abstract>Tumor acidosis is an important biomarker for aggressive tumors, and extracellular pH (pHe) of the tumor microenvironment can be used to predict and evaluate tumor responses to chemotherapy and immunotherapy. AcidoCEST MRI measures tumor pHe by exploiting the pH-dependent chemical exchange saturation transfer (CEST) effect of iopamidol, an exogenous CT agent repurposed for CEST MRI. However, all pH fitting methodologies for acidoCEST MRI data have limitations. Herein we present results of the application of machine learning for extracting pH values from CEST Z-spectra of iopamidol. We acquired 36,000 experimental CEST spectra from 200 phantoms of iopamidol prepared at five concentrations, five T values, and eight pH values at five temperatures, acquired at six saturation powers and six saturation times. We also acquired T , T , B RF power, and B magnetic field strength supplementary MR information. These MR images were used to train and validate machine learning models for the tasks of pH classification and pH regression. Specifically, we tested the L1-penalized logistic regression classification (LRC) model and the random forest classification (RFC) model for classifying the CEST Z-spectra for thresholds at pH 6.5 and 7.0. Our results showed that both RFC and LRC were effective for pH classification, although the RFC model achieved higher predictive value, and improved the accuracy of classification accuracy with CEST Z-spectra with a more limited set of saturation frequencies. Furthermore, we used LASSO and random forest regression (RFR) models to explore pH regression, which showed that the RFR model achieved higher accuracy and precision for estimating pH across the entire pH range of 6.2-7.3, especially when using a more limited set of features. Based on these results, machine learning for analysis of acidoCEST MRI is promising for eventual in vivo determination of tumor pHe.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37280721</pmid><doi>10.1002/nbm.4986</doi><orcidid>https://orcid.org/0000-0002-8109-3995</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2023-10, Vol.36 (10), p.e4986-e4986
issn 0952-3480
1099-1492
1099-1492
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529789
source Wiley
subjects Accuracy
Acidosis
Biological products
Biomarkers
Chemotherapy
Classification
Field strength
Immunotherapy
In vivo methods and tests
Learning algorithms
Machine learning
Magnetic fields
Magnetic resonance imaging
Model accuracy
pH effects
Regression analysis
Regression models
Saturation
Spectra
Tumor microenvironment
Tumors
title A machine learning approach that measures pH using acidoCEST MRI of iopamidol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20approach%20that%20measures%20pH%20using%20acidoCEST%20MRI%20of%20iopamidol&rft.jtitle=NMR%20in%20biomedicine&rft.au=Li,%20Tianzhe&rft.date=2023-10-01&rft.volume=36&rft.issue=10&rft.spage=e4986&rft.epage=e4986&rft.pages=e4986-e4986&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4986&rft_dat=%3Cproquest_pubme%3E2823494943%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-f5a5d934f1c2ccd44ef9d997de581642aef511f1231e345e7c8f93ba3d90c0a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864346736&rft_id=info:pmid/37280721&rfr_iscdi=true