Loading…
Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia
The electrocatalytic nitrate (NO3 –) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vac...
Saved in:
Published in: | Journal of the American Chemical Society 2023-10, Vol.145 (39), p.21387-21396 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83 |
---|---|
cites | cdi_FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83 |
container_end_page | 21396 |
container_issue | 39 |
container_start_page | 21387 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Chu, Kaibin Zong, Wei Xue, Guohao Guo, Hele Qin, Jingjing Zhu, Haiyan Zhang, Nan Tian, Zhihong Dong, Hongliang Miao, Yue-E. Roeffaers, Maarten B. J. Hofkens, Johan Lai, Feili Liu, Tianxi |
description | The electrocatalytic nitrate (NO3 –) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3−δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3−δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3−δ (LF0.9Cu0.1) submicrofibers with a stronger Fe–O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 μg h–1 mg–1 cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3 – enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton–electron coupling step (*NO3 + H+ + e– → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts. |
doi_str_mv | 10.1021/jacs.3c06402 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10557098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866758150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83</originalsourceid><addsrcrecordid>eNqFks2O0zAUhS0EYsrAjgfwkgUZ_JPY7gqNSmGQBgYNP9vIsW9Sl8QutlPIY_GGpNMKhITEyjr28XeurYPQU0ouKGH0xVabdMENESVh99CCVowUFWXiPloQQlghleBn6FFK21mWTNGH6IxLyZQSywX6udLZBY8_jk3KLo9HkaPO0E24DRG_gj30Yed8hz9ADPv01WXANz-cBfzd5Q2-dWYz66kDj79oo72Zindg3YyweLXRsQN8O-uUo2uOAWuvmx4SvnLdpp_wum2dceAzfu_uovG6B5NjiGBHc3cjB3w5DME7_Rg9aHWf4MlpPUefX68_ra6K65s3b1eX14WeH5kLKS2TXAtpRGtbUVXSWCAg1JI1DSEUWlWJsrGguWGW8IouS7CKSAOsaqzi5-jlkbsbmwGsmceLuq930Q06TnXQrv77xLtN3YV9TckcRpYHwrMTIYZvI6RcDy4Z6HvtIYyp5qQkpVCcs_9amRJCVopWZLY-P1pNDClFaH-PREl9aER9aER9asQf8mFzG8bo50_7t_UXzYi6tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866758150</pqid></control><display><type>article</type><title>Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chu, Kaibin ; Zong, Wei ; Xue, Guohao ; Guo, Hele ; Qin, Jingjing ; Zhu, Haiyan ; Zhang, Nan ; Tian, Zhihong ; Dong, Hongliang ; Miao, Yue-E. ; Roeffaers, Maarten B. J. ; Hofkens, Johan ; Lai, Feili ; Liu, Tianxi</creator><creatorcontrib>Chu, Kaibin ; Zong, Wei ; Xue, Guohao ; Guo, Hele ; Qin, Jingjing ; Zhu, Haiyan ; Zhang, Nan ; Tian, Zhihong ; Dong, Hongliang ; Miao, Yue-E. ; Roeffaers, Maarten B. J. ; Hofkens, Johan ; Lai, Feili ; Liu, Tianxi</creatorcontrib><description>The electrocatalytic nitrate (NO3 –) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3−δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3−δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3−δ (LF0.9Cu0.1) submicrofibers with a stronger Fe–O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 μg h–1 mg–1 cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3 – enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton–electron coupling step (*NO3 + H+ + e– → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c06402</identifier><identifier>PMID: 37728869</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>ammonia ; cations ; density functional theory ; energy ; hybridization ; hydrogen production ; nitrates ; oxygen</subject><ispartof>Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21387-21396</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83</citedby><cites>FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83</cites><orcidid>0000-0001-6582-6514 ; 0000-0002-4945-0737 ; 0000-0002-2177-0544 ; 0000-0002-9101-0567 ; 0000-0002-3660-029X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Chu, Kaibin</creatorcontrib><creatorcontrib>Zong, Wei</creatorcontrib><creatorcontrib>Xue, Guohao</creatorcontrib><creatorcontrib>Guo, Hele</creatorcontrib><creatorcontrib>Qin, Jingjing</creatorcontrib><creatorcontrib>Zhu, Haiyan</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Tian, Zhihong</creatorcontrib><creatorcontrib>Dong, Hongliang</creatorcontrib><creatorcontrib>Miao, Yue-E.</creatorcontrib><creatorcontrib>Roeffaers, Maarten B. J.</creatorcontrib><creatorcontrib>Hofkens, Johan</creatorcontrib><creatorcontrib>Lai, Feili</creatorcontrib><creatorcontrib>Liu, Tianxi</creatorcontrib><title>Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The electrocatalytic nitrate (NO3 –) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3−δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3−δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3−δ (LF0.9Cu0.1) submicrofibers with a stronger Fe–O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 μg h–1 mg–1 cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3 – enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton–electron coupling step (*NO3 + H+ + e– → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.</description><subject>ammonia</subject><subject>cations</subject><subject>density functional theory</subject><subject>energy</subject><subject>hybridization</subject><subject>hydrogen production</subject><subject>nitrates</subject><subject>oxygen</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFks2O0zAUhS0EYsrAjgfwkgUZ_JPY7gqNSmGQBgYNP9vIsW9Sl8QutlPIY_GGpNMKhITEyjr28XeurYPQU0ouKGH0xVabdMENESVh99CCVowUFWXiPloQQlghleBn6FFK21mWTNGH6IxLyZQSywX6udLZBY8_jk3KLo9HkaPO0E24DRG_gj30Yed8hz9ADPv01WXANz-cBfzd5Q2-dWYz66kDj79oo72Zindg3YyweLXRsQN8O-uUo2uOAWuvmx4SvnLdpp_wum2dceAzfu_uovG6B5NjiGBHc3cjB3w5DME7_Rg9aHWf4MlpPUefX68_ra6K65s3b1eX14WeH5kLKS2TXAtpRGtbUVXSWCAg1JI1DSEUWlWJsrGguWGW8IouS7CKSAOsaqzi5-jlkbsbmwGsmceLuq930Q06TnXQrv77xLtN3YV9TckcRpYHwrMTIYZvI6RcDy4Z6HvtIYyp5qQkpVCcs_9amRJCVopWZLY-P1pNDClFaH-PREl9aER9aER9asQf8mFzG8bo50_7t_UXzYi6tQ</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Chu, Kaibin</creator><creator>Zong, Wei</creator><creator>Xue, Guohao</creator><creator>Guo, Hele</creator><creator>Qin, Jingjing</creator><creator>Zhu, Haiyan</creator><creator>Zhang, Nan</creator><creator>Tian, Zhihong</creator><creator>Dong, Hongliang</creator><creator>Miao, Yue-E.</creator><creator>Roeffaers, Maarten B. J.</creator><creator>Hofkens, Johan</creator><creator>Lai, Feili</creator><creator>Liu, Tianxi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6582-6514</orcidid><orcidid>https://orcid.org/0000-0002-4945-0737</orcidid><orcidid>https://orcid.org/0000-0002-2177-0544</orcidid><orcidid>https://orcid.org/0000-0002-9101-0567</orcidid><orcidid>https://orcid.org/0000-0002-3660-029X</orcidid></search><sort><creationdate>20231004</creationdate><title>Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia</title><author>Chu, Kaibin ; Zong, Wei ; Xue, Guohao ; Guo, Hele ; Qin, Jingjing ; Zhu, Haiyan ; Zhang, Nan ; Tian, Zhihong ; Dong, Hongliang ; Miao, Yue-E. ; Roeffaers, Maarten B. J. ; Hofkens, Johan ; Lai, Feili ; Liu, Tianxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ammonia</topic><topic>cations</topic><topic>density functional theory</topic><topic>energy</topic><topic>hybridization</topic><topic>hydrogen production</topic><topic>nitrates</topic><topic>oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Kaibin</creatorcontrib><creatorcontrib>Zong, Wei</creatorcontrib><creatorcontrib>Xue, Guohao</creatorcontrib><creatorcontrib>Guo, Hele</creatorcontrib><creatorcontrib>Qin, Jingjing</creatorcontrib><creatorcontrib>Zhu, Haiyan</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Tian, Zhihong</creatorcontrib><creatorcontrib>Dong, Hongliang</creatorcontrib><creatorcontrib>Miao, Yue-E.</creatorcontrib><creatorcontrib>Roeffaers, Maarten B. J.</creatorcontrib><creatorcontrib>Hofkens, Johan</creatorcontrib><creatorcontrib>Lai, Feili</creatorcontrib><creatorcontrib>Liu, Tianxi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Kaibin</au><au>Zong, Wei</au><au>Xue, Guohao</au><au>Guo, Hele</au><au>Qin, Jingjing</au><au>Zhu, Haiyan</au><au>Zhang, Nan</au><au>Tian, Zhihong</au><au>Dong, Hongliang</au><au>Miao, Yue-E.</au><au>Roeffaers, Maarten B. J.</au><au>Hofkens, Johan</au><au>Lai, Feili</au><au>Liu, Tianxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>145</volume><issue>39</issue><spage>21387</spage><epage>21396</epage><pages>21387-21396</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The electrocatalytic nitrate (NO3 –) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3−δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3−δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3−δ (LF0.9Cu0.1) submicrofibers with a stronger Fe–O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 μg h–1 mg–1 cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3 – enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton–electron coupling step (*NO3 + H+ + e– → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.</abstract><pub>American Chemical Society</pub><pmid>37728869</pmid><doi>10.1021/jacs.3c06402</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6582-6514</orcidid><orcidid>https://orcid.org/0000-0002-4945-0737</orcidid><orcidid>https://orcid.org/0000-0002-2177-0544</orcidid><orcidid>https://orcid.org/0000-0002-9101-0567</orcidid><orcidid>https://orcid.org/0000-0002-3660-029X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21387-21396 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10557098 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | ammonia cations density functional theory energy hybridization hydrogen production nitrates oxygen |
title | Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20Substitution%20Strategy%20for%20Developing%20Perovskite%20Oxide%20with%20Rich%20Oxygen%20Vacancy-Mediated%20Charge%20Redistribution%20Enables%20Highly%20Efficient%20Nitrate%20Electroreduction%20to%20Ammonia&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chu,%20Kaibin&rft.date=2023-10-04&rft.volume=145&rft.issue=39&rft.spage=21387&rft.epage=21396&rft.pages=21387-21396&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c06402&rft_dat=%3Cproquest_pubme%3E2866758150%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a428t-77d273a67c6fdf6557cde0e6892bb001ef8564bdea3c2d035194ed807ce25bd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866758150&rft_id=info:pmid/37728869&rfr_iscdi=true |