Loading…
Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications
High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resi...
Saved in:
Published in: | Materials 2023-09, Vol.16 (19), p.6520 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3 |
container_end_page | |
container_issue | 19 |
container_start_page | 6520 |
container_title | Materials |
container_volume | 16 |
creator | Bololoi, Alina Elena Geambazu, Laura Elena Antoniac, Iulian Vasile Bololoi, Robert Viorel Manea, Ciprian Alexandru Cojocaru, Vasile Dănuţ Pătroi, Delia |
description | High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm. |
doi_str_mv | 10.3390/ma16196520 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772098118</galeid><sourcerecordid>A772098118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3</originalsourceid><addsrcrecordid>eNptkktrHDEMx01paUKaSz_BQC-lMKkf49epbJc0CaQP2PRsPB574-AZTe3ZwH77eklok1LrYCH99JcEQugtwWeMafxxtEQQLTjFL9Ax0Vq0RHfdyyf-ETot5Q7XxxhRVL9GR0wq1gkuj9FmAykO7Waxi29-ZHC-lDhtGwjNGtb5K3zrb2JzGbe37fm0ZJj3zSol2DcBcvM5wuiH6GxqVvOcqrNEmMob9CrYVPzp43-Cfn45v1lfttffL67Wq-vWdZwsrVCDd5g4NgzEBq56KjDxgivWa6aokKyvxoUNgTKssaaUkUFpzofeCRfYCfr0oDvv-jqH83VAm8yc42jz3oCN5nlmirdmC_eGYC6Z6mRVeP-okOHXzpfFjLE4n5KdPOyKoUpKpimRrKLv_kHvYJenut-BEkIwyZ9QW5u8iVOA2tgdRM1KSoq1IkRV6uw_VLXBj9HB5EOs8WcFHx4KXIZSsg9_liTYHM7A_D0D9htt3qC_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876663753</pqid></control><display><type>article</type><title>Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bololoi, Alina Elena ; Geambazu, Laura Elena ; Antoniac, Iulian Vasile ; Bololoi, Robert Viorel ; Manea, Ciprian Alexandru ; Cojocaru, Vasile Dănuţ ; Pătroi, Delia</creator><creatorcontrib>Bololoi, Alina Elena ; Geambazu, Laura Elena ; Antoniac, Iulian Vasile ; Bololoi, Robert Viorel ; Manea, Ciprian Alexandru ; Cojocaru, Vasile Dănuţ ; Pătroi, Delia</creatorcontrib><description>High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16196520</identifier><identifier>PMID: 37834657</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Cell culture ; Corrosion resistance ; Cost effectiveness ; Ductility ; Entropy ; Face centered cubic lattice ; High entropy alloys ; Mathematical analysis ; Mechanical alloying ; Mechanical properties ; Metal powders ; Molybdenum ; Oxidation ; Powder metallurgy ; Powders ; Process controls ; Raw materials ; Specialty metals industry ; Technology application ; Titanium alloys ; Transplants & implants</subject><ispartof>Materials, 2023-09, Vol.16 (19), p.6520</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3</citedby><cites>FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3</cites><orcidid>0000-0003-1579-423X ; 0000-0001-8563-2952 ; 0000-0001-5641-4905 ; 0000-0003-0112-3494 ; 0000-0001-9437-4051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2876663753/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2876663753?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Bololoi, Alina Elena</creatorcontrib><creatorcontrib>Geambazu, Laura Elena</creatorcontrib><creatorcontrib>Antoniac, Iulian Vasile</creatorcontrib><creatorcontrib>Bololoi, Robert Viorel</creatorcontrib><creatorcontrib>Manea, Ciprian Alexandru</creatorcontrib><creatorcontrib>Cojocaru, Vasile Dănuţ</creatorcontrib><creatorcontrib>Pătroi, Delia</creatorcontrib><title>Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications</title><title>Materials</title><description>High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm.</description><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Cell culture</subject><subject>Corrosion resistance</subject><subject>Cost effectiveness</subject><subject>Ductility</subject><subject>Entropy</subject><subject>Face centered cubic lattice</subject><subject>High entropy alloys</subject><subject>Mathematical analysis</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Metal powders</subject><subject>Molybdenum</subject><subject>Oxidation</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Process controls</subject><subject>Raw materials</subject><subject>Specialty metals industry</subject><subject>Technology application</subject><subject>Titanium alloys</subject><subject>Transplants & implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkktrHDEMx01paUKaSz_BQC-lMKkf49epbJc0CaQP2PRsPB574-AZTe3ZwH77eklok1LrYCH99JcEQugtwWeMafxxtEQQLTjFL9Ax0Vq0RHfdyyf-ETot5Q7XxxhRVL9GR0wq1gkuj9FmAykO7Waxi29-ZHC-lDhtGwjNGtb5K3zrb2JzGbe37fm0ZJj3zSol2DcBcvM5wuiH6GxqVvOcqrNEmMob9CrYVPzp43-Cfn45v1lfttffL67Wq-vWdZwsrVCDd5g4NgzEBq56KjDxgivWa6aokKyvxoUNgTKssaaUkUFpzofeCRfYCfr0oDvv-jqH83VAm8yc42jz3oCN5nlmirdmC_eGYC6Z6mRVeP-okOHXzpfFjLE4n5KdPOyKoUpKpimRrKLv_kHvYJenut-BEkIwyZ9QW5u8iVOA2tgdRM1KSoq1IkRV6uw_VLXBj9HB5EOs8WcFHx4KXIZSsg9_liTYHM7A_D0D9htt3qC_</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Bololoi, Alina Elena</creator><creator>Geambazu, Laura Elena</creator><creator>Antoniac, Iulian Vasile</creator><creator>Bololoi, Robert Viorel</creator><creator>Manea, Ciprian Alexandru</creator><creator>Cojocaru, Vasile Dănuţ</creator><creator>Pătroi, Delia</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1579-423X</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid><orcidid>https://orcid.org/0000-0001-5641-4905</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><orcidid>https://orcid.org/0000-0001-9437-4051</orcidid></search><sort><creationdate>20230930</creationdate><title>Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications</title><author>Bololoi, Alina Elena ; Geambazu, Laura Elena ; Antoniac, Iulian Vasile ; Bololoi, Robert Viorel ; Manea, Ciprian Alexandru ; Cojocaru, Vasile Dănuţ ; Pătroi, Delia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Cell culture</topic><topic>Corrosion resistance</topic><topic>Cost effectiveness</topic><topic>Ductility</topic><topic>Entropy</topic><topic>Face centered cubic lattice</topic><topic>High entropy alloys</topic><topic>Mathematical analysis</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Metal powders</topic><topic>Molybdenum</topic><topic>Oxidation</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Process controls</topic><topic>Raw materials</topic><topic>Specialty metals industry</topic><topic>Technology application</topic><topic>Titanium alloys</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bololoi, Alina Elena</creatorcontrib><creatorcontrib>Geambazu, Laura Elena</creatorcontrib><creatorcontrib>Antoniac, Iulian Vasile</creatorcontrib><creatorcontrib>Bololoi, Robert Viorel</creatorcontrib><creatorcontrib>Manea, Ciprian Alexandru</creatorcontrib><creatorcontrib>Cojocaru, Vasile Dănuţ</creatorcontrib><creatorcontrib>Pătroi, Delia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bololoi, Alina Elena</au><au>Geambazu, Laura Elena</au><au>Antoniac, Iulian Vasile</au><au>Bololoi, Robert Viorel</au><au>Manea, Ciprian Alexandru</au><au>Cojocaru, Vasile Dănuţ</au><au>Pătroi, Delia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications</atitle><jtitle>Materials</jtitle><date>2023-09-30</date><risdate>2023</risdate><volume>16</volume><issue>19</issue><spage>6520</spage><pages>6520-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37834657</pmid><doi>10.3390/ma16196520</doi><orcidid>https://orcid.org/0000-0003-1579-423X</orcidid><orcidid>https://orcid.org/0000-0001-8563-2952</orcidid><orcidid>https://orcid.org/0000-0001-5641-4905</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><orcidid>https://orcid.org/0000-0001-9437-4051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-09, Vol.16 (19), p.6520 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10573847 |
source | Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloys Biocompatibility Biomedical engineering Biomedical materials Cell culture Corrosion resistance Cost effectiveness Ductility Entropy Face centered cubic lattice High entropy alloys Mathematical analysis Mechanical alloying Mechanical properties Metal powders Molybdenum Oxidation Powder metallurgy Powders Process controls Raw materials Specialty metals industry Technology application Titanium alloys Transplants & implants |
title | Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Processing%20of%20CoCrMoNbTi%20High-Entropy%20Alloy%20for%20Biomedical%20Applications&rft.jtitle=Materials&rft.au=Bololoi,%20Alina%20Elena&rft.date=2023-09-30&rft.volume=16&rft.issue=19&rft.spage=6520&rft.pages=6520-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16196520&rft_dat=%3Cgale_pubme%3EA772098118%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-68dec01c3dd1af58b2601e6583b9382673b3b356aff2309092231d8955dbc6cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876663753&rft_id=info:pmid/37834657&rft_galeid=A772098118&rfr_iscdi=true |