Loading…
Investigating the Spectroscopy of the Gas Phase Guanine–Cytosine Pair: Keto versus Enol Configurations
We report on a vibrational study of the guanine–cytosine dimer tautomers using state-of-the-art quasiclassical trajectory and semiclassical vibrational spectroscopy. The latter includes possible quantum mechanical effects. Through an accurate comparison to the experimental spectra, we are able to sh...
Saved in:
Published in: | The journal of physical chemistry letters 2023-10, Vol.14 (40), p.8940-8947 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on a vibrational study of the guanine–cytosine dimer tautomers using state-of-the-art quasiclassical trajectory and semiclassical vibrational spectroscopy. The latter includes possible quantum mechanical effects. Through an accurate comparison to the experimental spectra, we are able to shine a light on the hydrogen bond network of one of the main subunits of DNA and put the experimental assignment on a solid footing. Our calculations corroborate the experimental conclusion that the global minimum Watson-and-Crick structure is not detected in the spectra, and there is no evidence of tunnel-effect-based double proton hopping. Our accurate assignment of the spectral features may also serve as a basis for the development of precise force fields to study the guanine–cytosine dimer. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.3c02073 |