Loading…
Role of N Doping in the Reduction of Titania Nanostructures
The effect of N-doping of titania (TiO2) nanoparticles (NPs) on their reduction through neutral O vacancy (Ovac) formation is investigated using all electron density functional theory-based calculations, including hybrid density functionals, and taking the bipyramidal anatase (TiO2)84 NP as a realis...
Saved in:
Published in: | Journal of physical chemistry. C 2023-10, Vol.127 (40), p.20128-20136 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of N-doping of titania (TiO2) nanoparticles (NPs) on their reduction through neutral O vacancy (Ovac) formation is investigated using all electron density functional theory-based calculations, including hybrid density functionals, and taking the bipyramidal anatase (TiO2)84 NP as a realistic model. The location of the N dopant is systematically analyzed, including O substitution in the (TiO2)84 structure and N occupying interstitial regions. Our computational study concludes that interstitial N doping is more favorable than N substituting O atoms and confirms that the presence of N reduces the energy gap. In the N-doped NP, Ovac formation is more favored than in undoped NP but less than in the N-doped bulk, which has important consequences. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.3c04665 |