Loading…
CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering
Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of o...
Saved in:
Published in: | Nature biotechnology 2021-04, Vol.39 (4), p.480-489 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13 |
container_end_page | 489 |
container_issue | 4 |
container_start_page | 480 |
container_title | Nature biotechnology |
container_volume | 39 |
creator | Vo, Phuc Leo H. Ronda, Carlotta Klompe, Sanne E. Chen, Ethan E. Acree, Christopher Wang, Harris H. Sternberg, Samuel H. |
description | Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn
7
-like transposon from
Vibrio cholerae
, which uses a Type I-F CRISPR–Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA–assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.
Optimized RNA-guided transposons efficiently integrate large DNA sequences in multiple bacterial species. |
doi_str_mv | 10.1038/s41587-020-00745-y |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10583764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658229296</galeid><sourcerecordid>A658229296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6B7yQgiAK2zXfba9kGPwYWFyZVS-8CZn0tJOlTcaklZ1_b2rXdSoqEkjCyfO-ITlvkjzG6AwjWrwMDPMizxBBGUI549n-TnKMORMZFqW4G_doPMZcHCUPQrhCCAkmxP3kiFJCESnpcfJluV5dflin6_eLrBlMBVVqbA-NVwFCWjufbk2zzaCujTZg9f407Ya2N7sWriO7UboHb1SbNmBdBynYxliIJds8TO7Vqg3w6GY9ST69ef1x-S47v3i7Wi7OMy3yos-Kimmsa6iQUpxpUmG0oTpHjGLQdVWIAlHCcM4KnXNCdVWCAOA5QxtMeIXpSfJq8t0Nmw4qDbb3qpU7bzrl99IpI-cn1mxl475JjHhBc8Giw_MbB---DhB62ZmgoW2VBTcESZhgmAlajujT39ArN3gb3ycJx_GrcywOqEa1II2tXbxYj6ZyIXhBSElKEamzP1BxVNAZ7SzUJtZngmczQWR6uO4bNYQg5-CLv4Ory_X_sxef5-zpAbsZQux1iFOIGenDJJnhZMK1dyF4qG-bgpEcIyynCMsYYfkjwnIfRU8O23kr-ZnZCNAJCLsxZuB_teAftt8Bey740Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511567164</pqid></control><display><type>article</type><title>CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering</title><source>Nature</source><creator>Vo, Phuc Leo H. ; Ronda, Carlotta ; Klompe, Sanne E. ; Chen, Ethan E. ; Acree, Christopher ; Wang, Harris H. ; Sternberg, Samuel H.</creator><creatorcontrib>Vo, Phuc Leo H. ; Ronda, Carlotta ; Klompe, Sanne E. ; Chen, Ethan E. ; Acree, Christopher ; Wang, Harris H. ; Sternberg, Samuel H.</creatorcontrib><description>Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn
7
-like transposon from
Vibrio cholerae
, which uses a Type I-F CRISPR–Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA–assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.
Optimized RNA-guided transposons efficiently integrate large DNA sequences in multiple bacterial species.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-00745-y</identifier><identifier>PMID: 33230293</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337 ; 631/61 ; Agriculture ; Bacteria ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Control ; CRISPR ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements ; Efficiency ; Gene Editing - methods ; Gene sequencing ; Gene therapy ; Genome editing ; Genome, Bacterial ; Genomes ; Integrases ; Life Sciences ; Loci ; Mathematical analysis ; Methods ; Microbial genetic engineering ; Multiplexing ; Nucleotide sequence ; Plasmids - genetics ; Recombination ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; Transposition ; Transposons ; Vibrio cholerae - genetics</subject><ispartof>Nature biotechnology, 2021-04, Vol.39 (4), p.480-489</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13</citedby><cites>FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13</cites><orcidid>0000-0002-3719-7770 ; 0000-0002-0151-9459 ; 0000-0003-1765-8290 ; 0000-0002-3958-1055 ; 0000-0001-8240-9114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33230293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vo, Phuc Leo H.</creatorcontrib><creatorcontrib>Ronda, Carlotta</creatorcontrib><creatorcontrib>Klompe, Sanne E.</creatorcontrib><creatorcontrib>Chen, Ethan E.</creatorcontrib><creatorcontrib>Acree, Christopher</creatorcontrib><creatorcontrib>Wang, Harris H.</creatorcontrib><creatorcontrib>Sternberg, Samuel H.</creatorcontrib><title>CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn
7
-like transposon from
Vibrio cholerae
, which uses a Type I-F CRISPR–Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA–assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.
Optimized RNA-guided transposons efficiently integrate large DNA sequences in multiple bacterial species.</description><subject>631/337</subject><subject>631/61</subject><subject>Agriculture</subject><subject>Bacteria</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Control</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements</subject><subject>Efficiency</subject><subject>Gene Editing - methods</subject><subject>Gene sequencing</subject><subject>Gene therapy</subject><subject>Genome editing</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Integrases</subject><subject>Life Sciences</subject><subject>Loci</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Microbial genetic engineering</subject><subject>Multiplexing</subject><subject>Nucleotide sequence</subject><subject>Plasmids - genetics</subject><subject>Recombination</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Transposition</subject><subject>Transposons</subject><subject>Vibrio cholerae - genetics</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkl2L1DAUhoso7rr6B7yQgiAK2zXfba9kGPwYWFyZVS-8CZn0tJOlTcaklZ1_b2rXdSoqEkjCyfO-ITlvkjzG6AwjWrwMDPMizxBBGUI549n-TnKMORMZFqW4G_doPMZcHCUPQrhCCAkmxP3kiFJCESnpcfJluV5dflin6_eLrBlMBVVqbA-NVwFCWjufbk2zzaCujTZg9f407Ya2N7sWriO7UboHb1SbNmBdBynYxliIJds8TO7Vqg3w6GY9ST69ef1x-S47v3i7Wi7OMy3yos-Kimmsa6iQUpxpUmG0oTpHjGLQdVWIAlHCcM4KnXNCdVWCAOA5QxtMeIXpSfJq8t0Nmw4qDbb3qpU7bzrl99IpI-cn1mxl475JjHhBc8Giw_MbB---DhB62ZmgoW2VBTcESZhgmAlajujT39ArN3gb3ycJx_GrcywOqEa1II2tXbxYj6ZyIXhBSElKEamzP1BxVNAZ7SzUJtZngmczQWR6uO4bNYQg5-CLv4Ory_X_sxef5-zpAbsZQux1iFOIGenDJJnhZMK1dyF4qG-bgpEcIyynCMsYYfkjwnIfRU8O23kr-ZnZCNAJCLsxZuB_teAftt8Bey740Q</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Vo, Phuc Leo H.</creator><creator>Ronda, Carlotta</creator><creator>Klompe, Sanne E.</creator><creator>Chen, Ethan E.</creator><creator>Acree, Christopher</creator><creator>Wang, Harris H.</creator><creator>Sternberg, Samuel H.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3719-7770</orcidid><orcidid>https://orcid.org/0000-0002-0151-9459</orcidid><orcidid>https://orcid.org/0000-0003-1765-8290</orcidid><orcidid>https://orcid.org/0000-0002-3958-1055</orcidid><orcidid>https://orcid.org/0000-0001-8240-9114</orcidid></search><sort><creationdate>20210401</creationdate><title>CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering</title><author>Vo, Phuc Leo H. ; Ronda, Carlotta ; Klompe, Sanne E. ; Chen, Ethan E. ; Acree, Christopher ; Wang, Harris H. ; Sternberg, Samuel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/337</topic><topic>631/61</topic><topic>Agriculture</topic><topic>Bacteria</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Control</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements</topic><topic>Efficiency</topic><topic>Gene Editing - methods</topic><topic>Gene sequencing</topic><topic>Gene therapy</topic><topic>Genome editing</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Integrases</topic><topic>Life Sciences</topic><topic>Loci</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Microbial genetic engineering</topic><topic>Multiplexing</topic><topic>Nucleotide sequence</topic><topic>Plasmids - genetics</topic><topic>Recombination</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Transposition</topic><topic>Transposons</topic><topic>Vibrio cholerae - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, Phuc Leo H.</creatorcontrib><creatorcontrib>Ronda, Carlotta</creatorcontrib><creatorcontrib>Klompe, Sanne E.</creatorcontrib><creatorcontrib>Chen, Ethan E.</creatorcontrib><creatorcontrib>Acree, Christopher</creatorcontrib><creatorcontrib>Wang, Harris H.</creatorcontrib><creatorcontrib>Sternberg, Samuel H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Business Insights: Global</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Phuc Leo H.</au><au>Ronda, Carlotta</au><au>Klompe, Sanne E.</au><au>Chen, Ethan E.</au><au>Acree, Christopher</au><au>Wang, Harris H.</au><au>Sternberg, Samuel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>39</volume><issue>4</issue><spage>480</spage><epage>489</epage><pages>480-489</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn
7
-like transposon from
Vibrio cholerae
, which uses a Type I-F CRISPR–Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA–assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.
Optimized RNA-guided transposons efficiently integrate large DNA sequences in multiple bacterial species.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33230293</pmid><doi>10.1038/s41587-020-00745-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3719-7770</orcidid><orcidid>https://orcid.org/0000-0002-0151-9459</orcidid><orcidid>https://orcid.org/0000-0003-1765-8290</orcidid><orcidid>https://orcid.org/0000-0002-3958-1055</orcidid><orcidid>https://orcid.org/0000-0001-8240-9114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2021-04, Vol.39 (4), p.480-489 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10583764 |
source | Nature |
subjects | 631/337 631/61 Agriculture Bacteria Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Control CRISPR CRISPR-Cas Systems Deoxyribonucleic acid DNA DNA Transposable Elements Efficiency Gene Editing - methods Gene sequencing Gene therapy Genome editing Genome, Bacterial Genomes Integrases Life Sciences Loci Mathematical analysis Methods Microbial genetic engineering Multiplexing Nucleotide sequence Plasmids - genetics Recombination Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics Transposition Transposons Vibrio cholerae - genetics |
title | CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%20RNA-guided%20integrases%20for%20high-efficiency,%20multiplexed%20bacterial%20genome%20engineering&rft.jtitle=Nature%20biotechnology&rft.au=Vo,%20Phuc%20Leo%20H.&rft.date=2021-04-01&rft.volume=39&rft.issue=4&rft.spage=480&rft.epage=489&rft.pages=480-489&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-00745-y&rft_dat=%3Cgale_pubme%3EA658229296%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c678t-8d4c1cfed0aa54c2d10b3c70431ecfd86803241748c7523cd9e6ee5740b125d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511567164&rft_id=info:pmid/33230293&rft_galeid=A658229296&rfr_iscdi=true |