Loading…

PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data

Abstract Motivation Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomi...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics advances 2023-01, Vol.3 (1), p.vbad145-vbad145
Main Authors: Sandoval, Lorena, Jafri, Saleet, Balasubramanian, Jeya Balaji, Bhawsar, Praphulla, Edelson, Jacob L, Martins, Yasmmin, Maass, Wolfgang, Chanock, Stephen J, Garcia-Closas, Montserrat, Almeida, Jonas S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3
cites cdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3
container_end_page vbad145
container_issue 1
container_start_page vbad145
container_title Bioinformatics advances
container_volume 3
creator Sandoval, Lorena
Jafri, Saleet
Balasubramanian, Jeya Balaji
Bhawsar, Praphulla
Edelson, Jacob L
Martins, Yasmmin
Maass, Wolfgang
Chanock, Stephen J
Garcia-Closas, Montserrat
Almeida, Jonas S
description Abstract Motivation Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device. Results A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not). Availability and implementation The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].
doi_str_mv 10.1093/bioadv/vbad145
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioadv/vbad145</oup_id><sourcerecordid>2880825087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</originalsourceid><addsrcrecordid>eNqFkc1LxEAMxYsouKhXz3NUsJq0093uSUT8AkHx4zxkpuk62nbqTFvZ_94uu4iePCXwfnlJeFF0iHCKME_PtHVUDGeDpgJlthVNkmmaxQASt3_1u9FBCO8AkMxmU5TpJKoen54NVeZEkGi9Hcgs49ZzYD_YZiFWUl9RZ10jXCk8fYnWVcsFN9YIb8OHCMaNuCi9q0VhPZsu7lxsXBP6mr0YSVdbE0RBHe1HOyVVgQ82dS96vb56ubyN7x9u7i4v7mMjIeliBpQ6z3Keakk43k7ACWAJ6TTjVGpNSQGQssSylDxjjTlqRpRyjqNu0r3ofO3b9rrmwnDTearU-F9NfqkcWfVXaeybWrhBIWT5fI7p6HC0cfDus-fQqdoGw1VFDbs-qCTPIU8yyGcjerpGjXcheC5_9iCoVTZqnY3aZDMOHK8HXN_-x34D2MqVQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880825087</pqid></control><display><type>article</type><title>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</title><source>Oxford Journals Open Access</source><creator>Sandoval, Lorena ; Jafri, Saleet ; Balasubramanian, Jeya Balaji ; Bhawsar, Praphulla ; Edelson, Jacob L ; Martins, Yasmmin ; Maass, Wolfgang ; Chanock, Stephen J ; Garcia-Closas, Montserrat ; Almeida, Jonas S</creator><contributor>Lengauer, Thomas</contributor><creatorcontrib>Sandoval, Lorena ; Jafri, Saleet ; Balasubramanian, Jeya Balaji ; Bhawsar, Praphulla ; Edelson, Jacob L ; Martins, Yasmmin ; Maass, Wolfgang ; Chanock, Stephen J ; Garcia-Closas, Montserrat ; Almeida, Jonas S ; Lengauer, Thomas</creatorcontrib><description>Abstract Motivation Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device. Results A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not). Availability and implementation The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].</description><identifier>ISSN: 2635-0041</identifier><identifier>EISSN: 2635-0041</identifier><identifier>DOI: 10.1093/bioadv/vbad145</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Application Note</subject><ispartof>Bioinformatics advances, 2023-01, Vol.3 (1), p.vbad145-vbad145</ispartof><rights>Published by Oxford University Press 2023. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</citedby><cites>FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</cites><orcidid>0000-0002-2324-3393 ; 0000-0003-1033-2650 ; 0000-0002-0206-0993 ; 0000-0002-7883-7922 ; 0000-0002-6830-1948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589913/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589913/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27923,27924,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioadv/vbad145$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><contributor>Lengauer, Thomas</contributor><creatorcontrib>Sandoval, Lorena</creatorcontrib><creatorcontrib>Jafri, Saleet</creatorcontrib><creatorcontrib>Balasubramanian, Jeya Balaji</creatorcontrib><creatorcontrib>Bhawsar, Praphulla</creatorcontrib><creatorcontrib>Edelson, Jacob L</creatorcontrib><creatorcontrib>Martins, Yasmmin</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><creatorcontrib>Chanock, Stephen J</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Almeida, Jonas S</creatorcontrib><title>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</title><title>Bioinformatics advances</title><description>Abstract Motivation Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device. Results A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not). Availability and implementation The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].</description><subject>Application Note</subject><issn>2635-0041</issn><issn>2635-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxEAMxYsouKhXz3NUsJq0093uSUT8AkHx4zxkpuk62nbqTFvZ_94uu4iePCXwfnlJeFF0iHCKME_PtHVUDGeDpgJlthVNkmmaxQASt3_1u9FBCO8AkMxmU5TpJKoen54NVeZEkGi9Hcgs49ZzYD_YZiFWUl9RZ10jXCk8fYnWVcsFN9YIb8OHCMaNuCi9q0VhPZsu7lxsXBP6mr0YSVdbE0RBHe1HOyVVgQ82dS96vb56ubyN7x9u7i4v7mMjIeliBpQ6z3Keakk43k7ACWAJ6TTjVGpNSQGQssSylDxjjTlqRpRyjqNu0r3ofO3b9rrmwnDTearU-F9NfqkcWfVXaeybWrhBIWT5fI7p6HC0cfDus-fQqdoGw1VFDbs-qCTPIU8yyGcjerpGjXcheC5_9iCoVTZqnY3aZDMOHK8HXN_-x34D2MqVQg</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Sandoval, Lorena</creator><creator>Jafri, Saleet</creator><creator>Balasubramanian, Jeya Balaji</creator><creator>Bhawsar, Praphulla</creator><creator>Edelson, Jacob L</creator><creator>Martins, Yasmmin</creator><creator>Maass, Wolfgang</creator><creator>Chanock, Stephen J</creator><creator>Garcia-Closas, Montserrat</creator><creator>Almeida, Jonas S</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2324-3393</orcidid><orcidid>https://orcid.org/0000-0003-1033-2650</orcidid><orcidid>https://orcid.org/0000-0002-0206-0993</orcidid><orcidid>https://orcid.org/0000-0002-7883-7922</orcidid><orcidid>https://orcid.org/0000-0002-6830-1948</orcidid></search><sort><creationdate>20230105</creationdate><title>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</title><author>Sandoval, Lorena ; Jafri, Saleet ; Balasubramanian, Jeya Balaji ; Bhawsar, Praphulla ; Edelson, Jacob L ; Martins, Yasmmin ; Maass, Wolfgang ; Chanock, Stephen J ; Garcia-Closas, Montserrat ; Almeida, Jonas S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Application Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandoval, Lorena</creatorcontrib><creatorcontrib>Jafri, Saleet</creatorcontrib><creatorcontrib>Balasubramanian, Jeya Balaji</creatorcontrib><creatorcontrib>Bhawsar, Praphulla</creatorcontrib><creatorcontrib>Edelson, Jacob L</creatorcontrib><creatorcontrib>Martins, Yasmmin</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><creatorcontrib>Chanock, Stephen J</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Almeida, Jonas S</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sandoval, Lorena</au><au>Jafri, Saleet</au><au>Balasubramanian, Jeya Balaji</au><au>Bhawsar, Praphulla</au><au>Edelson, Jacob L</au><au>Martins, Yasmmin</au><au>Maass, Wolfgang</au><au>Chanock, Stephen J</au><au>Garcia-Closas, Montserrat</au><au>Almeida, Jonas S</au><au>Lengauer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</atitle><jtitle>Bioinformatics advances</jtitle><date>2023-01-05</date><risdate>2023</risdate><volume>3</volume><issue>1</issue><spage>vbad145</spage><epage>vbad145</epage><pages>vbad145-vbad145</pages><issn>2635-0041</issn><eissn>2635-0041</eissn><abstract>Abstract Motivation Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device. Results A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not). Availability and implementation The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].</abstract><pub>Oxford University Press</pub><doi>10.1093/bioadv/vbad145</doi><orcidid>https://orcid.org/0000-0002-2324-3393</orcidid><orcidid>https://orcid.org/0000-0003-1033-2650</orcidid><orcidid>https://orcid.org/0000-0002-0206-0993</orcidid><orcidid>https://orcid.org/0000-0002-7883-7922</orcidid><orcidid>https://orcid.org/0000-0002-6830-1948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2635-0041
ispartof Bioinformatics advances, 2023-01, Vol.3 (1), p.vbad145-vbad145
issn 2635-0041
2635-0041
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589913
source Oxford Journals Open Access
subjects Application Note
title PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PRScalc,%20a%20privacy-preserving%20calculation%20of%20raw%20polygenic%20risk%20scores%20from%20direct-to-consumer%20genomics%20data&rft.jtitle=Bioinformatics%20advances&rft.au=Sandoval,%20Lorena&rft.date=2023-01-05&rft.volume=3&rft.issue=1&rft.spage=vbad145&rft.epage=vbad145&rft.pages=vbad145-vbad145&rft.issn=2635-0041&rft.eissn=2635-0041&rft_id=info:doi/10.1093/bioadv/vbad145&rft_dat=%3Cproquest_TOX%3E2880825087%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2880825087&rft_id=info:pmid/&rft_oup_id=10.1093/bioadv/vbad145&rfr_iscdi=true