Loading…
PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data
Abstract Motivation Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomi...
Saved in:
Published in: | Bioinformatics advances 2023-01, Vol.3 (1), p.vbad145-vbad145 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3 |
container_end_page | vbad145 |
container_issue | 1 |
container_start_page | vbad145 |
container_title | Bioinformatics advances |
container_volume | 3 |
creator | Sandoval, Lorena Jafri, Saleet Balasubramanian, Jeya Balaji Bhawsar, Praphulla Edelson, Jacob L Martins, Yasmmin Maass, Wolfgang Chanock, Stephen J Garcia-Closas, Montserrat Almeida, Jonas S |
description | Abstract
Motivation
Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device.
Results
A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not).
Availability and implementation
The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project]. |
doi_str_mv | 10.1093/bioadv/vbad145 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioadv/vbad145</oup_id><sourcerecordid>2880825087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</originalsourceid><addsrcrecordid>eNqFkc1LxEAMxYsouKhXz3NUsJq0093uSUT8AkHx4zxkpuk62nbqTFvZ_94uu4iePCXwfnlJeFF0iHCKME_PtHVUDGeDpgJlthVNkmmaxQASt3_1u9FBCO8AkMxmU5TpJKoen54NVeZEkGi9Hcgs49ZzYD_YZiFWUl9RZ10jXCk8fYnWVcsFN9YIb8OHCMaNuCi9q0VhPZsu7lxsXBP6mr0YSVdbE0RBHe1HOyVVgQ82dS96vb56ubyN7x9u7i4v7mMjIeliBpQ6z3Keakk43k7ACWAJ6TTjVGpNSQGQssSylDxjjTlqRpRyjqNu0r3ofO3b9rrmwnDTearU-F9NfqkcWfVXaeybWrhBIWT5fI7p6HC0cfDus-fQqdoGw1VFDbs-qCTPIU8yyGcjerpGjXcheC5_9iCoVTZqnY3aZDMOHK8HXN_-x34D2MqVQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880825087</pqid></control><display><type>article</type><title>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</title><source>Oxford Journals Open Access</source><creator>Sandoval, Lorena ; Jafri, Saleet ; Balasubramanian, Jeya Balaji ; Bhawsar, Praphulla ; Edelson, Jacob L ; Martins, Yasmmin ; Maass, Wolfgang ; Chanock, Stephen J ; Garcia-Closas, Montserrat ; Almeida, Jonas S</creator><contributor>Lengauer, Thomas</contributor><creatorcontrib>Sandoval, Lorena ; Jafri, Saleet ; Balasubramanian, Jeya Balaji ; Bhawsar, Praphulla ; Edelson, Jacob L ; Martins, Yasmmin ; Maass, Wolfgang ; Chanock, Stephen J ; Garcia-Closas, Montserrat ; Almeida, Jonas S ; Lengauer, Thomas</creatorcontrib><description>Abstract
Motivation
Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device.
Results
A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not).
Availability and implementation
The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].</description><identifier>ISSN: 2635-0041</identifier><identifier>EISSN: 2635-0041</identifier><identifier>DOI: 10.1093/bioadv/vbad145</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Application Note</subject><ispartof>Bioinformatics advances, 2023-01, Vol.3 (1), p.vbad145-vbad145</ispartof><rights>Published by Oxford University Press 2023. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</citedby><cites>FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</cites><orcidid>0000-0002-2324-3393 ; 0000-0003-1033-2650 ; 0000-0002-0206-0993 ; 0000-0002-7883-7922 ; 0000-0002-6830-1948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589913/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589913/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27923,27924,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioadv/vbad145$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><contributor>Lengauer, Thomas</contributor><creatorcontrib>Sandoval, Lorena</creatorcontrib><creatorcontrib>Jafri, Saleet</creatorcontrib><creatorcontrib>Balasubramanian, Jeya Balaji</creatorcontrib><creatorcontrib>Bhawsar, Praphulla</creatorcontrib><creatorcontrib>Edelson, Jacob L</creatorcontrib><creatorcontrib>Martins, Yasmmin</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><creatorcontrib>Chanock, Stephen J</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Almeida, Jonas S</creatorcontrib><title>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</title><title>Bioinformatics advances</title><description>Abstract
Motivation
Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device.
Results
A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not).
Availability and implementation
The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].</description><subject>Application Note</subject><issn>2635-0041</issn><issn>2635-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxEAMxYsouKhXz3NUsJq0093uSUT8AkHx4zxkpuk62nbqTFvZ_94uu4iePCXwfnlJeFF0iHCKME_PtHVUDGeDpgJlthVNkmmaxQASt3_1u9FBCO8AkMxmU5TpJKoen54NVeZEkGi9Hcgs49ZzYD_YZiFWUl9RZ10jXCk8fYnWVcsFN9YIb8OHCMaNuCi9q0VhPZsu7lxsXBP6mr0YSVdbE0RBHe1HOyVVgQ82dS96vb56ubyN7x9u7i4v7mMjIeliBpQ6z3Keakk43k7ACWAJ6TTjVGpNSQGQssSylDxjjTlqRpRyjqNu0r3ofO3b9rrmwnDTearU-F9NfqkcWfVXaeybWrhBIWT5fI7p6HC0cfDus-fQqdoGw1VFDbs-qCTPIU8yyGcjerpGjXcheC5_9iCoVTZqnY3aZDMOHK8HXN_-x34D2MqVQg</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Sandoval, Lorena</creator><creator>Jafri, Saleet</creator><creator>Balasubramanian, Jeya Balaji</creator><creator>Bhawsar, Praphulla</creator><creator>Edelson, Jacob L</creator><creator>Martins, Yasmmin</creator><creator>Maass, Wolfgang</creator><creator>Chanock, Stephen J</creator><creator>Garcia-Closas, Montserrat</creator><creator>Almeida, Jonas S</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2324-3393</orcidid><orcidid>https://orcid.org/0000-0003-1033-2650</orcidid><orcidid>https://orcid.org/0000-0002-0206-0993</orcidid><orcidid>https://orcid.org/0000-0002-7883-7922</orcidid><orcidid>https://orcid.org/0000-0002-6830-1948</orcidid></search><sort><creationdate>20230105</creationdate><title>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</title><author>Sandoval, Lorena ; Jafri, Saleet ; Balasubramanian, Jeya Balaji ; Bhawsar, Praphulla ; Edelson, Jacob L ; Martins, Yasmmin ; Maass, Wolfgang ; Chanock, Stephen J ; Garcia-Closas, Montserrat ; Almeida, Jonas S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Application Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandoval, Lorena</creatorcontrib><creatorcontrib>Jafri, Saleet</creatorcontrib><creatorcontrib>Balasubramanian, Jeya Balaji</creatorcontrib><creatorcontrib>Bhawsar, Praphulla</creatorcontrib><creatorcontrib>Edelson, Jacob L</creatorcontrib><creatorcontrib>Martins, Yasmmin</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><creatorcontrib>Chanock, Stephen J</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Almeida, Jonas S</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sandoval, Lorena</au><au>Jafri, Saleet</au><au>Balasubramanian, Jeya Balaji</au><au>Bhawsar, Praphulla</au><au>Edelson, Jacob L</au><au>Martins, Yasmmin</au><au>Maass, Wolfgang</au><au>Chanock, Stephen J</au><au>Garcia-Closas, Montserrat</au><au>Almeida, Jonas S</au><au>Lengauer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data</atitle><jtitle>Bioinformatics advances</jtitle><date>2023-01-05</date><risdate>2023</risdate><volume>3</volume><issue>1</issue><spage>vbad145</spage><epage>vbad145</epage><pages>vbad145-vbad145</pages><issn>2635-0041</issn><eissn>2635-0041</eissn><abstract>Abstract
Motivation
Currently, the Polygenic Score (PGS) Catalog curates over 400 publications on over 500 traits corresponding to over 3000 polygenic risk scores (PRSs). To assess the feasibility of privately calculating the underlying multivariate relative risk for individuals with consumer genomics data, we developed an in-browserPRS calculator for genomic data that does not circulate any data or engage in any computation outside of the user's personal device.
Results
A prototype personal risk score calculator, created for research purposes, was developed to demonstrate how the PGS Catalog can be privately and readily applied to readily available direct-to-consumer genetic testing services, such as 23andMe. No software download, installation, or configuration is needed. The PRS web calculator matches individual PGS catalog entries with an individual's 23andMe genome data composed of 600k to 1.4 M single-nucleotide polymorphisms (SNPs). Beta coefficients provide researchers with a convenient assessment of risk associated with matched SNPs. This in-browser application was tested in a variety of personal devices, including smartphones, establishing the feasibility of privately calculating personal risk scores with up to a few thousand reference genetic variations and from the full 23andMe SNP data file (compressed or not).
Availability and implementation
The PRScalc web application is developed in JavaScript, HTML, and CSS and is available at GitHub repository (https://episphere.github.io/prs) under an MIT license. The datasets were derived from sources in the public domain: [PGS Catalog, Personal Genome Project].</abstract><pub>Oxford University Press</pub><doi>10.1093/bioadv/vbad145</doi><orcidid>https://orcid.org/0000-0002-2324-3393</orcidid><orcidid>https://orcid.org/0000-0003-1033-2650</orcidid><orcidid>https://orcid.org/0000-0002-0206-0993</orcidid><orcidid>https://orcid.org/0000-0002-7883-7922</orcidid><orcidid>https://orcid.org/0000-0002-6830-1948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2635-0041 |
ispartof | Bioinformatics advances, 2023-01, Vol.3 (1), p.vbad145-vbad145 |
issn | 2635-0041 2635-0041 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589913 |
source | Oxford Journals Open Access |
subjects | Application Note |
title | PRScalc, a privacy-preserving calculation of raw polygenic risk scores from direct-to-consumer genomics data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PRScalc,%20a%20privacy-preserving%20calculation%20of%20raw%20polygenic%20risk%20scores%20from%20direct-to-consumer%20genomics%20data&rft.jtitle=Bioinformatics%20advances&rft.au=Sandoval,%20Lorena&rft.date=2023-01-05&rft.volume=3&rft.issue=1&rft.spage=vbad145&rft.epage=vbad145&rft.pages=vbad145-vbad145&rft.issn=2635-0041&rft.eissn=2635-0041&rft_id=info:doi/10.1093/bioadv/vbad145&rft_dat=%3Cproquest_TOX%3E2880825087%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-e014b858e6b4a1635a0e201f0365e34bba2d003e41ff4e7eb181be114491e34c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2880825087&rft_id=info:pmid/&rft_oup_id=10.1093/bioadv/vbad145&rfr_iscdi=true |