Loading…

Rank intraclass correlation for clustered data

Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. H...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2023-10, Vol.42 (24), p.4333-4348
Main Authors: Tu, Shengxin, Li, Chun, Zeng, Donglin, Shepherd, Bryan E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3
cites cdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3
container_end_page 4348
container_issue 24
container_start_page 4333
container_title Statistics in medicine
container_volume 42
creator Tu, Shengxin
Li, Chun
Zeng, Donglin
Shepherd, Bryan E
description Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.
doi_str_mv 10.1002/sim.9864
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10592008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847341956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMo7roK_gIpePHSdZImTXISWfyCBUH0HNI00a5tsyat4L-3xXX9OM1hHh7emRehYwxzDEDOY9XMpcjpDppikDwFwsQumgLhPM05ZhN0EOMKAGNG-D6aZJxRAUxO0fxBt69J1XZBm1rHmBgfgq11V_k2cT4kpu5jZ4Mtk1J3-hDtOV1He7SZM_R0ffW4uE2X9zd3i8tlaijgLrU5sUUOnGEKhYCiwBmGkhPugJvS4VxmpTPEWCe5JAygwMaCFdoJqUG6bIYuvrzrvmhsaewYsFbrUDU6fCivK_V301Yv6tm_KzxcRQDEYDjbGIJ_623sVFNFY-tat9b3URFBeUaxZPmAnv5DV74P7XDfQPGcUMEI_RGa4GMM1m3TYFBjC2poQY0tDOjJ7_Rb8Pvt2SdZNIIj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876248524</pqid></control><display><type>article</type><title>Rank intraclass correlation for clustered data</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tu, Shengxin ; Li, Chun ; Zeng, Donglin ; Shepherd, Bryan E</creator><creatorcontrib>Tu, Shengxin ; Li, Chun ; Zeng, Donglin ; Shepherd, Bryan E</creatorcontrib><description>Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9864</identifier><identifier>PMID: 37548059</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biomedical Research - statistics &amp; numerical data ; Cluster Analysis ; Computer Simulation ; Data Interpretation, Statistical ; Humans ; Models, Statistical</subject><ispartof>Statistics in medicine, 2023-10, Vol.42 (24), p.4333-4348</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</citedby><cites>FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</cites><orcidid>0000-0002-3937-8903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37548059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Shengxin</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Zeng, Donglin</creatorcontrib><creatorcontrib>Shepherd, Bryan E</creatorcontrib><title>Rank intraclass correlation for clustered data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.</description><subject>Biomedical Research - statistics &amp; numerical data</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Models, Statistical</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMo7roK_gIpePHSdZImTXISWfyCBUH0HNI00a5tsyat4L-3xXX9OM1hHh7emRehYwxzDEDOY9XMpcjpDppikDwFwsQumgLhPM05ZhN0EOMKAGNG-D6aZJxRAUxO0fxBt69J1XZBm1rHmBgfgq11V_k2cT4kpu5jZ4Mtk1J3-hDtOV1He7SZM_R0ffW4uE2X9zd3i8tlaijgLrU5sUUOnGEKhYCiwBmGkhPugJvS4VxmpTPEWCe5JAygwMaCFdoJqUG6bIYuvrzrvmhsaewYsFbrUDU6fCivK_V301Yv6tm_KzxcRQDEYDjbGIJ_623sVFNFY-tat9b3URFBeUaxZPmAnv5DV74P7XDfQPGcUMEI_RGa4GMM1m3TYFBjC2poQY0tDOjJ7_Rb8Pvt2SdZNIIj</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Tu, Shengxin</creator><creator>Li, Chun</creator><creator>Zeng, Donglin</creator><creator>Shepherd, Bryan E</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3937-8903</orcidid></search><sort><creationdate>20231030</creationdate><title>Rank intraclass correlation for clustered data</title><author>Tu, Shengxin ; Li, Chun ; Zeng, Donglin ; Shepherd, Bryan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical Research - statistics &amp; numerical data</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Models, Statistical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Shengxin</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Zeng, Donglin</creatorcontrib><creatorcontrib>Shepherd, Bryan E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Shengxin</au><au>Li, Chun</au><au>Zeng, Donglin</au><au>Shepherd, Bryan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank intraclass correlation for clustered data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-10-30</date><risdate>2023</risdate><volume>42</volume><issue>24</issue><spage>4333</spage><epage>4348</epage><pages>4333-4348</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37548059</pmid><doi>10.1002/sim.9864</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3937-8903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2023-10, Vol.42 (24), p.4333-4348
issn 0277-6715
1097-0258
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10592008
source Wiley-Blackwell Read & Publish Collection
subjects Biomedical Research - statistics & numerical data
Cluster Analysis
Computer Simulation
Data Interpretation, Statistical
Humans
Models, Statistical
title Rank intraclass correlation for clustered data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20intraclass%20correlation%20for%20clustered%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Tu,%20Shengxin&rft.date=2023-10-30&rft.volume=42&rft.issue=24&rft.spage=4333&rft.epage=4348&rft.pages=4333-4348&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9864&rft_dat=%3Cproquest_pubme%3E2847341956%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876248524&rft_id=info:pmid/37548059&rfr_iscdi=true