Loading…
Rank intraclass correlation for clustered data
Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. H...
Saved in:
Published in: | Statistics in medicine 2023-10, Vol.42 (24), p.4333-4348 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3 |
container_end_page | 4348 |
container_issue | 24 |
container_start_page | 4333 |
container_title | Statistics in medicine |
container_volume | 42 |
creator | Tu, Shengxin Li, Chun Zeng, Donglin Shepherd, Bryan E |
description | Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data. |
doi_str_mv | 10.1002/sim.9864 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10592008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847341956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMo7roK_gIpePHSdZImTXISWfyCBUH0HNI00a5tsyat4L-3xXX9OM1hHh7emRehYwxzDEDOY9XMpcjpDppikDwFwsQumgLhPM05ZhN0EOMKAGNG-D6aZJxRAUxO0fxBt69J1XZBm1rHmBgfgq11V_k2cT4kpu5jZ4Mtk1J3-hDtOV1He7SZM_R0ffW4uE2X9zd3i8tlaijgLrU5sUUOnGEKhYCiwBmGkhPugJvS4VxmpTPEWCe5JAygwMaCFdoJqUG6bIYuvrzrvmhsaewYsFbrUDU6fCivK_V301Yv6tm_KzxcRQDEYDjbGIJ_623sVFNFY-tat9b3URFBeUaxZPmAnv5DV74P7XDfQPGcUMEI_RGa4GMM1m3TYFBjC2poQY0tDOjJ7_Rb8Pvt2SdZNIIj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876248524</pqid></control><display><type>article</type><title>Rank intraclass correlation for clustered data</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tu, Shengxin ; Li, Chun ; Zeng, Donglin ; Shepherd, Bryan E</creator><creatorcontrib>Tu, Shengxin ; Li, Chun ; Zeng, Donglin ; Shepherd, Bryan E</creatorcontrib><description>Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9864</identifier><identifier>PMID: 37548059</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biomedical Research - statistics & numerical data ; Cluster Analysis ; Computer Simulation ; Data Interpretation, Statistical ; Humans ; Models, Statistical</subject><ispartof>Statistics in medicine, 2023-10, Vol.42 (24), p.4333-4348</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</citedby><cites>FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</cites><orcidid>0000-0002-3937-8903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37548059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Shengxin</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Zeng, Donglin</creatorcontrib><creatorcontrib>Shepherd, Bryan E</creatorcontrib><title>Rank intraclass correlation for clustered data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.</description><subject>Biomedical Research - statistics & numerical data</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Models, Statistical</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMo7roK_gIpePHSdZImTXISWfyCBUH0HNI00a5tsyat4L-3xXX9OM1hHh7emRehYwxzDEDOY9XMpcjpDppikDwFwsQumgLhPM05ZhN0EOMKAGNG-D6aZJxRAUxO0fxBt69J1XZBm1rHmBgfgq11V_k2cT4kpu5jZ4Mtk1J3-hDtOV1He7SZM_R0ffW4uE2X9zd3i8tlaijgLrU5sUUOnGEKhYCiwBmGkhPugJvS4VxmpTPEWCe5JAygwMaCFdoJqUG6bIYuvrzrvmhsaewYsFbrUDU6fCivK_V301Yv6tm_KzxcRQDEYDjbGIJ_623sVFNFY-tat9b3URFBeUaxZPmAnv5DV74P7XDfQPGcUMEI_RGa4GMM1m3TYFBjC2poQY0tDOjJ7_Rb8Pvt2SdZNIIj</recordid><startdate>20231030</startdate><enddate>20231030</enddate><creator>Tu, Shengxin</creator><creator>Li, Chun</creator><creator>Zeng, Donglin</creator><creator>Shepherd, Bryan E</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3937-8903</orcidid></search><sort><creationdate>20231030</creationdate><title>Rank intraclass correlation for clustered data</title><author>Tu, Shengxin ; Li, Chun ; Zeng, Donglin ; Shepherd, Bryan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical Research - statistics & numerical data</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Models, Statistical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Shengxin</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Zeng, Donglin</creatorcontrib><creatorcontrib>Shepherd, Bryan E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Shengxin</au><au>Li, Chun</au><au>Zeng, Donglin</au><au>Shepherd, Bryan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank intraclass correlation for clustered data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-10-30</date><risdate>2023</risdate><volume>42</volume><issue>24</issue><spage>4333</spage><epage>4348</epage><pages>4333-4348</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37548059</pmid><doi>10.1002/sim.9864</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3937-8903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2023-10, Vol.42 (24), p.4333-4348 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10592008 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Biomedical Research - statistics & numerical data Cluster Analysis Computer Simulation Data Interpretation, Statistical Humans Models, Statistical |
title | Rank intraclass correlation for clustered data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20intraclass%20correlation%20for%20clustered%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Tu,%20Shengxin&rft.date=2023-10-30&rft.volume=42&rft.issue=24&rft.spage=4333&rft.epage=4348&rft.pages=4333-4348&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9864&rft_dat=%3Cproquest_pubme%3E2847341956%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-e62eb6075140b80bb1310d727f07cdf1693dfc2cef9792500b1ce0e8af89a09f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876248524&rft_id=info:pmid/37548059&rfr_iscdi=true |