Loading…

Engineered Biocatalytic Synthesis of β-N-Substituted-α-Amino Acids

Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of β-substituted amino acids. However, there are few exampl...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2023-10, Vol.62 (43), p.e202311189-e202311189
Main Authors: Villalona, Jairo, Higgins, Peyton M, Buller, Andrew R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of β-substituted amino acids. However, there are few examples of biocatalytic N-substitution reactions to make α,β-diamino acids. In this study, we used directed evolution to engineer the β-subunit of tryptophan synthase, TrpB, for improved activity with diverse amine nucleophiles. Mechanistic analysis shows that high yields are hindered by product re-entry into the catalytic cycle and subsequent decomposition. Additional equivalents of l-serine can inhibit product reentry through kinetic competition, facilitating preparative scale synthesis. We show β-substitution with a dozen aryl amine nucleophiles, including demonstration on a gram scale. These transformations yield an underexplored class of amino acids that can serve as unique building blocks for chemical biology and medicinal chemistry.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202311189