Loading…

The Eotaxin-1/CCR3 Axis and Matrix Metalloproteinase-9 Are Critical in Anti-NC16A IgE-Induced Bullous Pemphigoid

Bullous pemphigoid (BP) is the most common autoimmune bullous skin disease of humans and is characterized by eosinophilic inflammation and circulating and tissue-bound IgG and IgE autoantibodies directed against two hemidesmosomal proteins: BP180 and BP230. The noncollagenous 16A domain (NC16A) of B...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2023-10, Vol.211 (8), p.1216-1223
Main Authors: Jordan, Tyler J M, Chen, Jinbo, Li, Ning, Burette, Susan, Wan, Li, Chen, Liuqing, Culton, Donna A, Geng, Songmei, Googe, Paul, Thomas, Nancy E, Diaz, Luis A, Liu, Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bullous pemphigoid (BP) is the most common autoimmune bullous skin disease of humans and is characterized by eosinophilic inflammation and circulating and tissue-bound IgG and IgE autoantibodies directed against two hemidesmosomal proteins: BP180 and BP230. The noncollagenous 16A domain (NC16A) of BP180 has been found to contain major epitopes recognized by autoantibodies in BP. We recently established the pathogenicity of anti-NC16A IgE through passive transfer of patient-derived autoantibodies to double-humanized mice that express the human high-affinity IgE receptor, FcεRI, and human NC16A domain (FcεRI/NC16A). In this model, anti-NC16A IgEs recruit eosinophils to mediate tissue injury and clinical disease in FcεRI/NC16A mice. The objective of this study was to characterize the molecular and cellular events that underlie eosinophil recruitment and eosinophil-dependent tissue injury in anti-NC16A IgE-induced BP. We show that anti-NC16A IgEs significantly increase levels of key eosinophil chemoattractants, eotaxin-1 and eotaxin-2, as well as the proteolytic enzyme matrix metalloproteinase-9 (MMP-9) in the lesional skin of FcεRI/NC16A mice. Importantly, neutralization of eotaxin-1, but not eotaxin-2, and blockade of the main eotaxin receptor, CCR3, drastically reduce anti-NC16A IgE-induced disease activity. We further show that anti-NC16A IgE/NC16A immune complexes induce the release of MMP-9 from eosinophils, and that MMP-9-deficient mice are resistant to anti-NC16A IgE-induced BP. Lastly, we find significantly increased levels of eotaxin-1, eotaxin-2, and MMP-9 in blister fluids of BP patients. Taken together, this study establishes the eotaxin-1/CCR3 axis and MMP-9 as key players in anti-NC16A IgE-induced BP and candidate therapeutic targets for future drug development and testing.
ISSN:0022-1767
1550-6606
1550-6606
DOI:10.4049/jimmunol.2300080