Loading…
A perspective on neuroscience data standardization with Neurodata Without Borders
Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful...
Saved in:
Published in: | ArXiv.org 2024-01 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | ArXiv.org |
container_volume | |
creator | Pierré, Andrea Pham, Tuan Pearl, Jonah Datta, Sandeep Robert Ritt, Jason T Fleischmann, Alexander |
description | Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs' efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes, challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience community and help bridge the gap between experimental neuroscience and data science. |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881246824</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1125-6bed60370c058d7ff8c1593b14c426b240dc14607a879ac34836f80bab1aa8d83</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobsz9BemlN4V8tcmuZA51wlAExctwmqQu0jU1SSf66606ZV6dc3hfngfOARpTxkguOaWHe_sITWN8wRjTUtCiYMdoxIQUDBM6RvfzrLMhdlYnt7WZb7PW9sFH7WyrbWYgQRYTtAaCcR-Q3NB4c2md3X7VvuOn4fR9yi58MAPqBB3V0EQ73c0Jery6fFgs89Xd9c1ivso7QmiRl5U1JWYCa1xII-paalLMWEW45rSsKMdGE15iAVLMQDMuWVlLXEFFAKSRbILOf7hdX22s0bZNARrVBbeB8K48OPU_ad1aPfutInjwYFkMhLMdIfjX3sakNi5q2zTQWt9HRaUklJeS8qF6ui_7s_w-kn0CdUtyVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881246824</pqid></control><display><type>article</type><title>A perspective on neuroscience data standardization with Neurodata Without Borders</title><source>Publicly Available Content Database</source><creator>Pierré, Andrea ; Pham, Tuan ; Pearl, Jonah ; Datta, Sandeep Robert ; Ritt, Jason T ; Fleischmann, Alexander</creator><creatorcontrib>Pierré, Andrea ; Pham, Tuan ; Pearl, Jonah ; Datta, Sandeep Robert ; Ritt, Jason T ; Fleischmann, Alexander</creatorcontrib><description>Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs' efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes, challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience community and help bridge the gap between experimental neuroscience and data science.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 37873012</identifier><language>eng</language><publisher>United States: Cornell University</publisher><ispartof>ArXiv.org, 2024-01</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,37012</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37873012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierré, Andrea</creatorcontrib><creatorcontrib>Pham, Tuan</creatorcontrib><creatorcontrib>Pearl, Jonah</creatorcontrib><creatorcontrib>Datta, Sandeep Robert</creatorcontrib><creatorcontrib>Ritt, Jason T</creatorcontrib><creatorcontrib>Fleischmann, Alexander</creatorcontrib><title>A perspective on neuroscience data standardization with Neurodata Without Borders</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs' efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes, challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience community and help bridge the gap between experimental neuroscience and data science.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobsz9BemlN4V8tcmuZA51wlAExctwmqQu0jU1SSf66606ZV6dc3hfngfOARpTxkguOaWHe_sITWN8wRjTUtCiYMdoxIQUDBM6RvfzrLMhdlYnt7WZb7PW9sFH7WyrbWYgQRYTtAaCcR-Q3NB4c2md3X7VvuOn4fR9yi58MAPqBB3V0EQ73c0Jery6fFgs89Xd9c1ivso7QmiRl5U1JWYCa1xII-paalLMWEW45rSsKMdGE15iAVLMQDMuWVlLXEFFAKSRbILOf7hdX22s0bZNARrVBbeB8K48OPU_ad1aPfutInjwYFkMhLMdIfjX3sakNi5q2zTQWt9HRaUklJeS8qF6ui_7s_w-kn0CdUtyVQ</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Pierré, Andrea</creator><creator>Pham, Tuan</creator><creator>Pearl, Jonah</creator><creator>Datta, Sandeep Robert</creator><creator>Ritt, Jason T</creator><creator>Fleischmann, Alexander</creator><general>Cornell University</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240122</creationdate><title>A perspective on neuroscience data standardization with Neurodata Without Borders</title><author>Pierré, Andrea ; Pham, Tuan ; Pearl, Jonah ; Datta, Sandeep Robert ; Ritt, Jason T ; Fleischmann, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1125-6bed60370c058d7ff8c1593b14c426b240dc14607a879ac34836f80bab1aa8d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Pierré, Andrea</creatorcontrib><creatorcontrib>Pham, Tuan</creatorcontrib><creatorcontrib>Pearl, Jonah</creatorcontrib><creatorcontrib>Datta, Sandeep Robert</creatorcontrib><creatorcontrib>Ritt, Jason T</creatorcontrib><creatorcontrib>Fleischmann, Alexander</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierré, Andrea</au><au>Pham, Tuan</au><au>Pearl, Jonah</au><au>Datta, Sandeep Robert</au><au>Ritt, Jason T</au><au>Fleischmann, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A perspective on neuroscience data standardization with Neurodata Without Borders</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-01-22</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs' efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes, challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience community and help bridge the gap between experimental neuroscience and data science.</abstract><cop>United States</cop><pub>Cornell University</pub><pmid>37873012</pmid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-8422 |
ispartof | ArXiv.org, 2024-01 |
issn | 2331-8422 2331-8422 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10593085 |
source | Publicly Available Content Database |
title | A perspective on neuroscience data standardization with Neurodata Without Borders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20perspective%20on%20neuroscience%20data%20standardization%20with%20Neurodata%20Without%20Borders&rft.jtitle=ArXiv.org&rft.au=Pierr%C3%A9,%20Andrea&rft.date=2024-01-22&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2881246824%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1125-6bed60370c058d7ff8c1593b14c426b240dc14607a879ac34836f80bab1aa8d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2881246824&rft_id=info:pmid/37873012&rfr_iscdi=true |