Loading…

Identification of Missense Variants Affecting Carcass Traits for Hanwoo Precision Breeding

This study aimed to identify causal variants associated with important carcass traits such as weight and meat quality in Hanwoo cattle. We analyzed missense mutations extracted from imputed sequence data (ARS-UCD1.2) and performed an exon-specific association test on the carcass traits of 16,970 com...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2023-09, Vol.14 (10), p.1839
Main Authors: Lee, Dong Jae, Kim, Yoonsik, Dinh, Phuong Thanh N, Chung, Yoonji, Lee, Dooho, Kim, Yeongkuk, Lee, Soo Hyun, Choi, Inchul, Lee, Seung Hwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to identify causal variants associated with important carcass traits such as weight and meat quality in Hanwoo cattle. We analyzed missense mutations extracted from imputed sequence data (ARS-UCD1.2) and performed an exon-specific association test on the carcass traits of 16,970 commercial Hanwoo. We found 33, 2, 1, and 3 significant SNPs associated with carcass weight (CW), backfat thickness (BFT), eye muscle area (EMA), and marbling score (MS), respectively. In CW and EMA, the most significant missense SNP was identified at 19,524,263 on BTA14 and involved the PRKDC. A missense SNP in the ZFAND2B, located at 107,160,304 on BTA2 was identified as being involved in BFT. For MS, missense SNP in the ACVR2B gene, located at 11,849,704 in BTA22 was identified as the most significant marker. The contribution of the most significant missense SNPs to genetic variance was confirmed to be 8.47%, 2.08%, 1.73%, and 1.19% in CW, BFT, EMA, and MS, respectively. We generated favorable and unfavorable haplotype combinations based on the significant SNPs for CW. Significant differences in GEBV (Genomic Estimated Breeding Values) were observed between groups with each favorable and unfavorable haplotype combination. In particular, the missense SNPs in PRKDC, MRPL9, and ANKFN1 appear to significantly affect the protein’s function and structure, making them strong candidates as causal mutations. These missense SNPs have the potential to serve as valuable markers for improving carcass traits in Hanwoo commercial farms.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes14101839