Loading…
Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease
Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–...
Saved in:
Published in: | Genes 2023-10, Vol.14 (10), p.1913 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3 |
container_end_page | |
container_issue | 10 |
container_start_page | 1913 |
container_title | Genes |
container_volume | 14 |
creator | Ortega-Vázquez, Alberto Sánchez-Badajos, Salvador Ramírez-García, Miguel Ángel Alvarez-Luquín, Diana López-López, Marisol Adalid-Peralta, Laura Virginia Monroy-Jaramillo, Nancy |
description | Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation. |
doi_str_mv | 10.3390/genes14101913 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10606744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772063760</galeid><sourcerecordid>A772063760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEolXpkr0lNmxS_J9khUbT8iMNpYuythz7OuOS2IOdgLrjNXg9ngQPrYBBSNgLW_ee8-nq6FbVU4LPGOvwiwECZMIJJh1hD6pjihtWc07Fwz_-R9Vpzje4HI4pxuJxdcSathNU0uNqt4lh8PNifdAjWm91GCAjH9A7P0ezjcEmXxrnlyu0jrtbdLlMPSSkg0XXMMYJEqANhGHe7k1XevYQ5oy--FK40umjDzmG71-_ZXTuM-gMT6pHTo8ZTu_fk-rDq4vr9Zt68_712_VqUxvesblm1FKiKaatA81dz4SwpKVStF2rJZYcN04I2veyM8Q46qxsWmaIEBL3Ult2Ur284-6WfgJrylhJj2qX_KTTrYraq8NO8Fs1xM-K4IJvOC-E5_eEFD8tkGc1-WxgHHWAuGTFSp6so52k_5XStmWiIVzuqc_-kt7EJZXwf6qo4F2L2W_VoEdQPrhYZjR7qFo1DcWSNRIX1dk_VOVamLyJAZwv9QNDfWcwKeacwP3Kg2C13yh1sFHsB225vCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882549803</pqid></control><display><type>article</type><title>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ortega-Vázquez, Alberto ; Sánchez-Badajos, Salvador ; Ramírez-García, Miguel Ángel ; Alvarez-Luquín, Diana ; López-López, Marisol ; Adalid-Peralta, Laura Virginia ; Monroy-Jaramillo, Nancy</creator><creatorcontrib>Ortega-Vázquez, Alberto ; Sánchez-Badajos, Salvador ; Ramírez-García, Miguel Ángel ; Alvarez-Luquín, Diana ; López-López, Marisol ; Adalid-Peralta, Laura Virginia ; Monroy-Jaramillo, Nancy</creatorcontrib><description>Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes14101913</identifier><identifier>PMID: 37895262</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activities of daily living ; Aging ; Analysis ; Biomarkers ; Blood tests ; case-control studies ; Cell division ; Copy number ; Cytokines ; Development and progression ; Disease ; Dopamine ; Dopamine receptors ; Enzyme-linked immunosorbent assay ; Ethnicity ; Genetic testing ; Inflammation ; interleukin-17 ; Longitudinal studies ; Mathematical models ; mitochondria ; Mitochondrial DNA ; Movement disorders ; Neurodegeneration ; Neurodegenerative diseases ; Oxidative stress ; Parkinson's disease ; pathophysiology ; Patients ; Pramipexole ; risk ; Risk factors ; statistical models ; Telomerase ; Telomeres ; Type 2 diabetes ; Variance analysis</subject><ispartof>Genes, 2023-10, Vol.14 (10), p.1913</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</citedby><cites>FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</cites><orcidid>0000-0003-2803-9444 ; 0000-0002-3954-8052 ; 0000-0002-1010-698X ; 0000-0003-2611-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882549803/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882549803?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Ortega-Vázquez, Alberto</creatorcontrib><creatorcontrib>Sánchez-Badajos, Salvador</creatorcontrib><creatorcontrib>Ramírez-García, Miguel Ángel</creatorcontrib><creatorcontrib>Alvarez-Luquín, Diana</creatorcontrib><creatorcontrib>López-López, Marisol</creatorcontrib><creatorcontrib>Adalid-Peralta, Laura Virginia</creatorcontrib><creatorcontrib>Monroy-Jaramillo, Nancy</creatorcontrib><title>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</title><title>Genes</title><description>Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.</description><subject>Activities of daily living</subject><subject>Aging</subject><subject>Analysis</subject><subject>Biomarkers</subject><subject>Blood tests</subject><subject>case-control studies</subject><subject>Cell division</subject><subject>Copy number</subject><subject>Cytokines</subject><subject>Development and progression</subject><subject>Disease</subject><subject>Dopamine</subject><subject>Dopamine receptors</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Ethnicity</subject><subject>Genetic testing</subject><subject>Inflammation</subject><subject>interleukin-17</subject><subject>Longitudinal studies</subject><subject>Mathematical models</subject><subject>mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Movement disorders</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Oxidative stress</subject><subject>Parkinson's disease</subject><subject>pathophysiology</subject><subject>Patients</subject><subject>Pramipexole</subject><subject>risk</subject><subject>Risk factors</subject><subject>statistical models</subject><subject>Telomerase</subject><subject>Telomeres</subject><subject>Type 2 diabetes</subject><subject>Variance analysis</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFks1u1DAUhSMEolXpkr0lNmxS_J9khUbT8iMNpYuythz7OuOS2IOdgLrjNXg9ngQPrYBBSNgLW_ee8-nq6FbVU4LPGOvwiwECZMIJJh1hD6pjihtWc07Fwz_-R9Vpzje4HI4pxuJxdcSathNU0uNqt4lh8PNifdAjWm91GCAjH9A7P0ezjcEmXxrnlyu0jrtbdLlMPSSkg0XXMMYJEqANhGHe7k1XevYQ5oy--FK40umjDzmG71-_ZXTuM-gMT6pHTo8ZTu_fk-rDq4vr9Zt68_712_VqUxvesblm1FKiKaatA81dz4SwpKVStF2rJZYcN04I2veyM8Q46qxsWmaIEBL3Ult2Ur284-6WfgJrylhJj2qX_KTTrYraq8NO8Fs1xM-K4IJvOC-E5_eEFD8tkGc1-WxgHHWAuGTFSp6so52k_5XStmWiIVzuqc_-kt7EJZXwf6qo4F2L2W_VoEdQPrhYZjR7qFo1DcWSNRIX1dk_VOVamLyJAZwv9QNDfWcwKeacwP3Kg2C13yh1sFHsB225vCU</recordid><startdate>20231007</startdate><enddate>20231007</enddate><creator>Ortega-Vázquez, Alberto</creator><creator>Sánchez-Badajos, Salvador</creator><creator>Ramírez-García, Miguel Ángel</creator><creator>Alvarez-Luquín, Diana</creator><creator>López-López, Marisol</creator><creator>Adalid-Peralta, Laura Virginia</creator><creator>Monroy-Jaramillo, Nancy</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2803-9444</orcidid><orcidid>https://orcid.org/0000-0002-3954-8052</orcidid><orcidid>https://orcid.org/0000-0002-1010-698X</orcidid><orcidid>https://orcid.org/0000-0003-2611-0972</orcidid></search><sort><creationdate>20231007</creationdate><title>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</title><author>Ortega-Vázquez, Alberto ; Sánchez-Badajos, Salvador ; Ramírez-García, Miguel Ángel ; Alvarez-Luquín, Diana ; López-López, Marisol ; Adalid-Peralta, Laura Virginia ; Monroy-Jaramillo, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of daily living</topic><topic>Aging</topic><topic>Analysis</topic><topic>Biomarkers</topic><topic>Blood tests</topic><topic>case-control studies</topic><topic>Cell division</topic><topic>Copy number</topic><topic>Cytokines</topic><topic>Development and progression</topic><topic>Disease</topic><topic>Dopamine</topic><topic>Dopamine receptors</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Ethnicity</topic><topic>Genetic testing</topic><topic>Inflammation</topic><topic>interleukin-17</topic><topic>Longitudinal studies</topic><topic>Mathematical models</topic><topic>mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Movement disorders</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Oxidative stress</topic><topic>Parkinson's disease</topic><topic>pathophysiology</topic><topic>Patients</topic><topic>Pramipexole</topic><topic>risk</topic><topic>Risk factors</topic><topic>statistical models</topic><topic>Telomerase</topic><topic>Telomeres</topic><topic>Type 2 diabetes</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Vázquez, Alberto</creatorcontrib><creatorcontrib>Sánchez-Badajos, Salvador</creatorcontrib><creatorcontrib>Ramírez-García, Miguel Ángel</creatorcontrib><creatorcontrib>Alvarez-Luquín, Diana</creatorcontrib><creatorcontrib>López-López, Marisol</creatorcontrib><creatorcontrib>Adalid-Peralta, Laura Virginia</creatorcontrib><creatorcontrib>Monroy-Jaramillo, Nancy</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Vázquez, Alberto</au><au>Sánchez-Badajos, Salvador</au><au>Ramírez-García, Miguel Ángel</au><au>Alvarez-Luquín, Diana</au><au>López-López, Marisol</au><au>Adalid-Peralta, Laura Virginia</au><au>Monroy-Jaramillo, Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</atitle><jtitle>Genes</jtitle><date>2023-10-07</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>1913</spage><pages>1913-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37895262</pmid><doi>10.3390/genes14101913</doi><orcidid>https://orcid.org/0000-0003-2803-9444</orcidid><orcidid>https://orcid.org/0000-0002-3954-8052</orcidid><orcidid>https://orcid.org/0000-0002-1010-698X</orcidid><orcidid>https://orcid.org/0000-0003-2611-0972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2023-10, Vol.14 (10), p.1913 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10606744 |
source | Publicly Available Content Database; PubMed Central |
subjects | Activities of daily living Aging Analysis Biomarkers Blood tests case-control studies Cell division Copy number Cytokines Development and progression Disease Dopamine Dopamine receptors Enzyme-linked immunosorbent assay Ethnicity Genetic testing Inflammation interleukin-17 Longitudinal studies Mathematical models mitochondria Mitochondrial DNA Movement disorders Neurodegeneration Neurodegenerative diseases Oxidative stress Parkinson's disease pathophysiology Patients Pramipexole risk Risk factors statistical models Telomerase Telomeres Type 2 diabetes Variance analysis |
title | Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20Changes%20in%20Mitochondrial%20DNA%20Copy%20Number%20and%20Telomere%20Length%20in%20Patients%20with%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Genes&rft.au=Ortega-V%C3%A1zquez,%20Alberto&rft.date=2023-10-07&rft.volume=14&rft.issue=10&rft.spage=1913&rft.pages=1913-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes14101913&rft_dat=%3Cgale_pubme%3EA772063760%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882549803&rft_id=info:pmid/37895262&rft_galeid=A772063760&rfr_iscdi=true |