Loading…

Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease

Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2023-10, Vol.14 (10), p.1913
Main Authors: Ortega-Vázquez, Alberto, Sánchez-Badajos, Salvador, Ramírez-García, Miguel Ángel, Alvarez-Luquín, Diana, López-López, Marisol, Adalid-Peralta, Laura Virginia, Monroy-Jaramillo, Nancy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3
cites cdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3
container_end_page
container_issue 10
container_start_page 1913
container_title Genes
container_volume 14
creator Ortega-Vázquez, Alberto
Sánchez-Badajos, Salvador
Ramírez-García, Miguel Ángel
Alvarez-Luquín, Diana
López-López, Marisol
Adalid-Peralta, Laura Virginia
Monroy-Jaramillo, Nancy
description Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.
doi_str_mv 10.3390/genes14101913
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10606744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772063760</galeid><sourcerecordid>A772063760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEolXpkr0lNmxS_J9khUbT8iMNpYuythz7OuOS2IOdgLrjNXg9ngQPrYBBSNgLW_ee8-nq6FbVU4LPGOvwiwECZMIJJh1hD6pjihtWc07Fwz_-R9Vpzje4HI4pxuJxdcSathNU0uNqt4lh8PNifdAjWm91GCAjH9A7P0ezjcEmXxrnlyu0jrtbdLlMPSSkg0XXMMYJEqANhGHe7k1XevYQ5oy--FK40umjDzmG71-_ZXTuM-gMT6pHTo8ZTu_fk-rDq4vr9Zt68_712_VqUxvesblm1FKiKaatA81dz4SwpKVStF2rJZYcN04I2veyM8Q46qxsWmaIEBL3Ult2Ur284-6WfgJrylhJj2qX_KTTrYraq8NO8Fs1xM-K4IJvOC-E5_eEFD8tkGc1-WxgHHWAuGTFSp6so52k_5XStmWiIVzuqc_-kt7EJZXwf6qo4F2L2W_VoEdQPrhYZjR7qFo1DcWSNRIX1dk_VOVamLyJAZwv9QNDfWcwKeacwP3Kg2C13yh1sFHsB225vCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882549803</pqid></control><display><type>article</type><title>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ortega-Vázquez, Alberto ; Sánchez-Badajos, Salvador ; Ramírez-García, Miguel Ángel ; Alvarez-Luquín, Diana ; López-López, Marisol ; Adalid-Peralta, Laura Virginia ; Monroy-Jaramillo, Nancy</creator><creatorcontrib>Ortega-Vázquez, Alberto ; Sánchez-Badajos, Salvador ; Ramírez-García, Miguel Ángel ; Alvarez-Luquín, Diana ; López-López, Marisol ; Adalid-Peralta, Laura Virginia ; Monroy-Jaramillo, Nancy</creatorcontrib><description>Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p &lt; 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p &lt; 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p &lt; 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p &lt; 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes14101913</identifier><identifier>PMID: 37895262</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activities of daily living ; Aging ; Analysis ; Biomarkers ; Blood tests ; case-control studies ; Cell division ; Copy number ; Cytokines ; Development and progression ; Disease ; Dopamine ; Dopamine receptors ; Enzyme-linked immunosorbent assay ; Ethnicity ; Genetic testing ; Inflammation ; interleukin-17 ; Longitudinal studies ; Mathematical models ; mitochondria ; Mitochondrial DNA ; Movement disorders ; Neurodegeneration ; Neurodegenerative diseases ; Oxidative stress ; Parkinson's disease ; pathophysiology ; Patients ; Pramipexole ; risk ; Risk factors ; statistical models ; Telomerase ; Telomeres ; Type 2 diabetes ; Variance analysis</subject><ispartof>Genes, 2023-10, Vol.14 (10), p.1913</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</citedby><cites>FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</cites><orcidid>0000-0003-2803-9444 ; 0000-0002-3954-8052 ; 0000-0002-1010-698X ; 0000-0003-2611-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882549803/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882549803?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Ortega-Vázquez, Alberto</creatorcontrib><creatorcontrib>Sánchez-Badajos, Salvador</creatorcontrib><creatorcontrib>Ramírez-García, Miguel Ángel</creatorcontrib><creatorcontrib>Alvarez-Luquín, Diana</creatorcontrib><creatorcontrib>López-López, Marisol</creatorcontrib><creatorcontrib>Adalid-Peralta, Laura Virginia</creatorcontrib><creatorcontrib>Monroy-Jaramillo, Nancy</creatorcontrib><title>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</title><title>Genes</title><description>Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p &lt; 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p &lt; 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p &lt; 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p &lt; 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.</description><subject>Activities of daily living</subject><subject>Aging</subject><subject>Analysis</subject><subject>Biomarkers</subject><subject>Blood tests</subject><subject>case-control studies</subject><subject>Cell division</subject><subject>Copy number</subject><subject>Cytokines</subject><subject>Development and progression</subject><subject>Disease</subject><subject>Dopamine</subject><subject>Dopamine receptors</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Ethnicity</subject><subject>Genetic testing</subject><subject>Inflammation</subject><subject>interleukin-17</subject><subject>Longitudinal studies</subject><subject>Mathematical models</subject><subject>mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Movement disorders</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Oxidative stress</subject><subject>Parkinson's disease</subject><subject>pathophysiology</subject><subject>Patients</subject><subject>Pramipexole</subject><subject>risk</subject><subject>Risk factors</subject><subject>statistical models</subject><subject>Telomerase</subject><subject>Telomeres</subject><subject>Type 2 diabetes</subject><subject>Variance analysis</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFks1u1DAUhSMEolXpkr0lNmxS_J9khUbT8iMNpYuythz7OuOS2IOdgLrjNXg9ngQPrYBBSNgLW_ee8-nq6FbVU4LPGOvwiwECZMIJJh1hD6pjihtWc07Fwz_-R9Vpzje4HI4pxuJxdcSathNU0uNqt4lh8PNifdAjWm91GCAjH9A7P0ezjcEmXxrnlyu0jrtbdLlMPSSkg0XXMMYJEqANhGHe7k1XevYQ5oy--FK40umjDzmG71-_ZXTuM-gMT6pHTo8ZTu_fk-rDq4vr9Zt68_712_VqUxvesblm1FKiKaatA81dz4SwpKVStF2rJZYcN04I2veyM8Q46qxsWmaIEBL3Ult2Ur284-6WfgJrylhJj2qX_KTTrYraq8NO8Fs1xM-K4IJvOC-E5_eEFD8tkGc1-WxgHHWAuGTFSp6so52k_5XStmWiIVzuqc_-kt7EJZXwf6qo4F2L2W_VoEdQPrhYZjR7qFo1DcWSNRIX1dk_VOVamLyJAZwv9QNDfWcwKeacwP3Kg2C13yh1sFHsB225vCU</recordid><startdate>20231007</startdate><enddate>20231007</enddate><creator>Ortega-Vázquez, Alberto</creator><creator>Sánchez-Badajos, Salvador</creator><creator>Ramírez-García, Miguel Ángel</creator><creator>Alvarez-Luquín, Diana</creator><creator>López-López, Marisol</creator><creator>Adalid-Peralta, Laura Virginia</creator><creator>Monroy-Jaramillo, Nancy</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2803-9444</orcidid><orcidid>https://orcid.org/0000-0002-3954-8052</orcidid><orcidid>https://orcid.org/0000-0002-1010-698X</orcidid><orcidid>https://orcid.org/0000-0003-2611-0972</orcidid></search><sort><creationdate>20231007</creationdate><title>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</title><author>Ortega-Vázquez, Alberto ; Sánchez-Badajos, Salvador ; Ramírez-García, Miguel Ángel ; Alvarez-Luquín, Diana ; López-López, Marisol ; Adalid-Peralta, Laura Virginia ; Monroy-Jaramillo, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of daily living</topic><topic>Aging</topic><topic>Analysis</topic><topic>Biomarkers</topic><topic>Blood tests</topic><topic>case-control studies</topic><topic>Cell division</topic><topic>Copy number</topic><topic>Cytokines</topic><topic>Development and progression</topic><topic>Disease</topic><topic>Dopamine</topic><topic>Dopamine receptors</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Ethnicity</topic><topic>Genetic testing</topic><topic>Inflammation</topic><topic>interleukin-17</topic><topic>Longitudinal studies</topic><topic>Mathematical models</topic><topic>mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Movement disorders</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Oxidative stress</topic><topic>Parkinson's disease</topic><topic>pathophysiology</topic><topic>Patients</topic><topic>Pramipexole</topic><topic>risk</topic><topic>Risk factors</topic><topic>statistical models</topic><topic>Telomerase</topic><topic>Telomeres</topic><topic>Type 2 diabetes</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Vázquez, Alberto</creatorcontrib><creatorcontrib>Sánchez-Badajos, Salvador</creatorcontrib><creatorcontrib>Ramírez-García, Miguel Ángel</creatorcontrib><creatorcontrib>Alvarez-Luquín, Diana</creatorcontrib><creatorcontrib>López-López, Marisol</creatorcontrib><creatorcontrib>Adalid-Peralta, Laura Virginia</creatorcontrib><creatorcontrib>Monroy-Jaramillo, Nancy</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Vázquez, Alberto</au><au>Sánchez-Badajos, Salvador</au><au>Ramírez-García, Miguel Ángel</au><au>Alvarez-Luquín, Diana</au><au>López-López, Marisol</au><au>Adalid-Peralta, Laura Virginia</au><au>Monroy-Jaramillo, Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease</atitle><jtitle>Genes</jtitle><date>2023-10-07</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>1913</spage><pages>1913-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Parkinson’s disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case–control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p &lt; 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p &lt; 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p &lt; 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p &lt; 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37895262</pmid><doi>10.3390/genes14101913</doi><orcidid>https://orcid.org/0000-0003-2803-9444</orcidid><orcidid>https://orcid.org/0000-0002-3954-8052</orcidid><orcidid>https://orcid.org/0000-0002-1010-698X</orcidid><orcidid>https://orcid.org/0000-0003-2611-0972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2023-10, Vol.14 (10), p.1913
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10606744
source Publicly Available Content Database; PubMed Central
subjects Activities of daily living
Aging
Analysis
Biomarkers
Blood tests
case-control studies
Cell division
Copy number
Cytokines
Development and progression
Disease
Dopamine
Dopamine receptors
Enzyme-linked immunosorbent assay
Ethnicity
Genetic testing
Inflammation
interleukin-17
Longitudinal studies
Mathematical models
mitochondria
Mitochondrial DNA
Movement disorders
Neurodegeneration
Neurodegenerative diseases
Oxidative stress
Parkinson's disease
pathophysiology
Patients
Pramipexole
risk
Risk factors
statistical models
Telomerase
Telomeres
Type 2 diabetes
Variance analysis
title Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20Changes%20in%20Mitochondrial%20DNA%20Copy%20Number%20and%20Telomere%20Length%20in%20Patients%20with%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Genes&rft.au=Ortega-V%C3%A1zquez,%20Alberto&rft.date=2023-10-07&rft.volume=14&rft.issue=10&rft.spage=1913&rft.pages=1913-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes14101913&rft_dat=%3Cgale_pubme%3EA772063760%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-32d21a2028fea4fb355d18265898a606407f552bb69c1cf2fd6783c15560b6ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882549803&rft_id=info:pmid/37895262&rft_galeid=A772063760&rfr_iscdi=true