Loading…
Barriers and solutions to the adoption of translational tools for computational psychiatry
Computational psychiatry is a field aimed at developing formal models of information processing in the human brain, and how alterations in this processing can lead to clinical phenomena. There has been significant progress in the development of tasks and how to model them, presenting an opportunity...
Saved in:
Published in: | Molecular psychiatry 2023-06, Vol.28 (6), p.2189-2196 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computational psychiatry is a field aimed at developing formal models of information processing in the human brain, and how alterations in this processing can lead to clinical phenomena. There has been significant progress in the development of tasks and how to model them, presenting an opportunity to incorporate computational psychiatry methodologies into large- scale research projects or into clinical practice. In this viewpoint, we explore some of the barriers to incorporation of computational psychiatry tasks and models into wider mainstream research directions. These barriers include the time required for participants to complete tasks, test-retest reliability, limited ecological validity, as well as practical concerns, such as lack of computational expertise and the expense and large sample sizes traditionally required to validate tasks and models. We then discuss solutions, such as the redesigning of tasks with a view toward feasibility, and the integration of tasks into more ecologically valid and standardized game platforms that can be more easily disseminated. Finally, we provide an example of how one task, the conditioned hallucinations task, might be translated into such a game. It is our hope that interest in the creation of more accessible and feasible computational tasks will help computational methods make more positive impacts on research as well as, eventually, clinical practice. |
---|---|
ISSN: | 1359-4184 1476-5578 1476-5578 |
DOI: | 10.1038/s41380-023-02114-y |