Loading…

Arterial spin labeling perfusion in acute Wernicke encephalopathy: a case series discussion

Wernicke’s encephalopathy (WE) is a life-threatening neurologic disorder resulting from thiamine (vitamin B1) deficiency that can be secondary to chronic alcohol abuse, gastrointestinal surgery, systemic infectious and non-infectious diseases, and chemotherapy. WE is classically characterized on MRI...

Full description

Saved in:
Bibliographic Details
Published in:BJR case reports 2023-10, Vol.9 (6)
Main Authors: Ann, Phoebe, Chen, Mark, Naidich, Thomas, Belani, Puneet, Nael, Kambiz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wernicke’s encephalopathy (WE) is a life-threatening neurologic disorder resulting from thiamine (vitamin B1) deficiency that can be secondary to chronic alcohol abuse, gastrointestinal surgery, systemic infectious and non-infectious diseases, and chemotherapy. WE is classically characterized on MRI by reduced diffusion and T2 prolongation along the mammillothalamic tracts, periaqueductal gray and tectal plate. We present two patients with acute WE who had baseline arterial spin labeling (ASL) perfusion at the time of presentation, demonstrating increase in cerebral blood flow (CBF) within the classically involved brain regions and concurrent global cerebral cortical hypoperfusion. Both patients were successfully treated with intravenous thiamine infusion. Post-treatment MRI demonstrated improvement of reduced diffusion and normalization of CBF within the involved structures. Prior histopathological studies have documented prominent undulation and luminal dilatation of arteries and arterioles in acute WE lesions, likely explaining the increased perfusion shown by imaging. The root of this pathophysiologic process may trace back to thiamine’s biochemical role in maintaining osmotic gradients and glucose metabolism, that if failed can lead to arterial hyper-perfusion. Our findings show that ASL-CBF can highlight the underlying pathophysiology in patients with acute WE by demonstrating increased CBF in involved central structures. This luxury perfusion may be a compensatory or protective mechanism by which increased metabolic demand is met in the acute setting and which, if treated timely, will show normalization of CBF on ASL imaging.
ISSN:2055-7159
2055-7159
DOI:10.1259/bjrcr.20220137