Loading…

Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients

To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a pros...

Full description

Saved in:
Bibliographic Details
Published in:Leukemia 2023-11, Vol.37 (11), p.2187-2196
Main Authors: Jahn, Ekaterina, Saadati, Maral, Fenaux, Pierre, Gobbi, Marco, Roboz, Gail J., Bullinger, Lars, Lutsik, Pavlo, Riedel, Anna, Plass, Christoph, Jahn, Nikolaus, Walter, Claudia, Holzmann, Karlheinz, Hao, Yong, Naim, Sue, Schreck, Nicholas, Krzykalla, Julia, Benner, Axel, Keer, Harold N., Azab, Mohammad, Döhner, Konstanze, Döhner, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163
cites cdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163
container_end_page 2196
container_issue 11
container_start_page 2187
container_title Leukemia
container_volume 37
creator Jahn, Ekaterina
Saadati, Maral
Fenaux, Pierre
Gobbi, Marco
Roboz, Gail J.
Bullinger, Lars
Lutsik, Pavlo
Riedel, Anna
Plass, Christoph
Jahn, Nikolaus
Walter, Claudia
Holzmann, Karlheinz
Hao, Yong
Naim, Sue
Schreck, Nicholas
Krzykalla, Julia
Benner, Axel
Keer, Harold N.
Azab, Mohammad
Döhner, Konstanze
Döhner, Hartmut
description To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes ( ASXL1 , TET2 , SRSF2 , DNMT3A ) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1 , DDX41 , DNMT3A , TET2 , and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2 , and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41 wildtype / FLT3 -ITD neg / TP53 wildtype (intermediate-risk), and FLT3 -ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.
doi_str_mv 10.1038/s41375-023-01999-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10624608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885676535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROD2jL-DCkLhxg0IVUMXKmM74k0ziRteEom710FJQAjVJP8K8tbQ9M_4sXAE53z33Xg5CLxh9w2jbv82ctZ0gtGkJZUopIh-hDeOdJEII9hhtaN93RKqGn6HznPeUHkX5FJ3VMsUUZxt0u_UuOGs8dvNibMFxwuUa8A5CnJ3F3oQxW7MArhfsYf0Oc6xilUoye7AlJgcZu4BDDMSFAiG7G_CHqoMpMGLwI6T6NnYtgOcD-OjurZzBiykOQsnP0JPJ-AzP784L9O3D5dftJ3L15ePn7fsrYnknChG2a6wRDTOW2kGqictBKGCMwwSs5yCkVKKfJg6NZDAOHR-ENJKqYbCWyfYCvTv5Lusww2hr72S8XpKbTTroaJz-WwnuWu_ijWZUNlzSvjq8vnNI8ccKuejZZQu-_hXENeumF63itOFtRV_9g-7jmkLdr1K9kJ0UrahUc6JsijknmB6mYVQfo9anqHWNWv-KWh_3ePnnHg8l99lWoD0BuUphB-l37__Y_gQ9I7jF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885676535</pqid></control><display><type>article</type><title>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</title><source>Nexis UK</source><source>Springer Nature</source><creator>Jahn, Ekaterina ; Saadati, Maral ; Fenaux, Pierre ; Gobbi, Marco ; Roboz, Gail J. ; Bullinger, Lars ; Lutsik, Pavlo ; Riedel, Anna ; Plass, Christoph ; Jahn, Nikolaus ; Walter, Claudia ; Holzmann, Karlheinz ; Hao, Yong ; Naim, Sue ; Schreck, Nicholas ; Krzykalla, Julia ; Benner, Axel ; Keer, Harold N. ; Azab, Mohammad ; Döhner, Konstanze ; Döhner, Hartmut</creator><creatorcontrib>Jahn, Ekaterina ; Saadati, Maral ; Fenaux, Pierre ; Gobbi, Marco ; Roboz, Gail J. ; Bullinger, Lars ; Lutsik, Pavlo ; Riedel, Anna ; Plass, Christoph ; Jahn, Nikolaus ; Walter, Claudia ; Holzmann, Karlheinz ; Hao, Yong ; Naim, Sue ; Schreck, Nicholas ; Krzykalla, Julia ; Benner, Axel ; Keer, Harold N. ; Azab, Mohammad ; Döhner, Konstanze ; Döhner, Hartmut</creatorcontrib><description>To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes ( ASXL1 , TET2 , SRSF2 , DNMT3A ) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1 , DDX41 , DNMT3A , TET2 , and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2 , and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41 wildtype / FLT3 -ITD neg / TP53 wildtype (intermediate-risk), and FLT3 -ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.</description><identifier>ISSN: 0887-6924</identifier><identifier>ISSN: 1476-5551</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-023-01999-6</identifier><identifier>PMID: 37591941</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/47 ; 45/77 ; 631/208/2489/144/68 ; 631/208/2489/1512 ; 631/67/1990/283/1897 ; 692/308/2056 ; 692/308/575 ; Acute myeloid leukemia ; Aged ; Algorithms ; Branches ; Cancer Research ; Cluster analysis ; Clustering ; Critical Care Medicine ; DNA sequencing ; fms-Like Tyrosine Kinase 3 - genetics ; fms-Like Tyrosine Kinase 3 - therapeutic use ; Genes ; Genetics ; Genomics ; Hematology ; Hematopoiesis ; Hemopoiesis ; Humans ; Intensive ; Internal Medicine ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - therapy ; Medicine ; Medicine &amp; Public Health ; Modelling ; Mutation ; Nucleophosmin ; Oncology ; p53 Protein ; Prognosis ; Prospective Studies ; Regression analysis ; Regression models ; Risk ; Risk groups ; Transcription Factors - genetics</subject><ispartof>Leukemia, 2023-11, Vol.37 (11), p.2187-2196</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023, corrected publication 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</citedby><cites>FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</cites><orcidid>0000-0002-2261-9862 ; 0000-0003-2554-3952 ; 0000-0003-2116-5536 ; 0009-0001-0741-1166 ; 0000-0002-7238-6956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37591941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahn, Ekaterina</creatorcontrib><creatorcontrib>Saadati, Maral</creatorcontrib><creatorcontrib>Fenaux, Pierre</creatorcontrib><creatorcontrib>Gobbi, Marco</creatorcontrib><creatorcontrib>Roboz, Gail J.</creatorcontrib><creatorcontrib>Bullinger, Lars</creatorcontrib><creatorcontrib>Lutsik, Pavlo</creatorcontrib><creatorcontrib>Riedel, Anna</creatorcontrib><creatorcontrib>Plass, Christoph</creatorcontrib><creatorcontrib>Jahn, Nikolaus</creatorcontrib><creatorcontrib>Walter, Claudia</creatorcontrib><creatorcontrib>Holzmann, Karlheinz</creatorcontrib><creatorcontrib>Hao, Yong</creatorcontrib><creatorcontrib>Naim, Sue</creatorcontrib><creatorcontrib>Schreck, Nicholas</creatorcontrib><creatorcontrib>Krzykalla, Julia</creatorcontrib><creatorcontrib>Benner, Axel</creatorcontrib><creatorcontrib>Keer, Harold N.</creatorcontrib><creatorcontrib>Azab, Mohammad</creatorcontrib><creatorcontrib>Döhner, Konstanze</creatorcontrib><creatorcontrib>Döhner, Hartmut</creatorcontrib><title>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes ( ASXL1 , TET2 , SRSF2 , DNMT3A ) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1 , DDX41 , DNMT3A , TET2 , and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2 , and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41 wildtype / FLT3 -ITD neg / TP53 wildtype (intermediate-risk), and FLT3 -ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.</description><subject>45/22</subject><subject>45/47</subject><subject>45/77</subject><subject>631/208/2489/144/68</subject><subject>631/208/2489/1512</subject><subject>631/67/1990/283/1897</subject><subject>692/308/2056</subject><subject>692/308/575</subject><subject>Acute myeloid leukemia</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Branches</subject><subject>Cancer Research</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Critical Care Medicine</subject><subject>DNA sequencing</subject><subject>fms-Like Tyrosine Kinase 3 - genetics</subject><subject>fms-Like Tyrosine Kinase 3 - therapeutic use</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Hematology</subject><subject>Hematopoiesis</subject><subject>Hemopoiesis</subject><subject>Humans</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - therapy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Modelling</subject><subject>Mutation</subject><subject>Nucleophosmin</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Risk</subject><subject>Risk groups</subject><subject>Transcription Factors - genetics</subject><issn>0887-6924</issn><issn>1476-5551</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhYnROD2jL-DCkLhxg0IVUMXKmM74k0ziRteEom710FJQAjVJP8K8tbQ9M_4sXAE53z33Xg5CLxh9w2jbv82ctZ0gtGkJZUopIh-hDeOdJEII9hhtaN93RKqGn6HznPeUHkX5FJ3VMsUUZxt0u_UuOGs8dvNibMFxwuUa8A5CnJ3F3oQxW7MArhfsYf0Oc6xilUoye7AlJgcZu4BDDMSFAiG7G_CHqoMpMGLwI6T6NnYtgOcD-OjurZzBiykOQsnP0JPJ-AzP784L9O3D5dftJ3L15ePn7fsrYnknChG2a6wRDTOW2kGqictBKGCMwwSs5yCkVKKfJg6NZDAOHR-ENJKqYbCWyfYCvTv5Lusww2hr72S8XpKbTTroaJz-WwnuWu_ijWZUNlzSvjq8vnNI8ccKuejZZQu-_hXENeumF63itOFtRV_9g-7jmkLdr1K9kJ0UrahUc6JsijknmB6mYVQfo9anqHWNWv-KWh_3ePnnHg8l99lWoD0BuUphB-l37__Y_gQ9I7jF</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Jahn, Ekaterina</creator><creator>Saadati, Maral</creator><creator>Fenaux, Pierre</creator><creator>Gobbi, Marco</creator><creator>Roboz, Gail J.</creator><creator>Bullinger, Lars</creator><creator>Lutsik, Pavlo</creator><creator>Riedel, Anna</creator><creator>Plass, Christoph</creator><creator>Jahn, Nikolaus</creator><creator>Walter, Claudia</creator><creator>Holzmann, Karlheinz</creator><creator>Hao, Yong</creator><creator>Naim, Sue</creator><creator>Schreck, Nicholas</creator><creator>Krzykalla, Julia</creator><creator>Benner, Axel</creator><creator>Keer, Harold N.</creator><creator>Azab, Mohammad</creator><creator>Döhner, Konstanze</creator><creator>Döhner, Hartmut</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2261-9862</orcidid><orcidid>https://orcid.org/0000-0003-2554-3952</orcidid><orcidid>https://orcid.org/0000-0003-2116-5536</orcidid><orcidid>https://orcid.org/0009-0001-0741-1166</orcidid><orcidid>https://orcid.org/0000-0002-7238-6956</orcidid></search><sort><creationdate>20231101</creationdate><title>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</title><author>Jahn, Ekaterina ; Saadati, Maral ; Fenaux, Pierre ; Gobbi, Marco ; Roboz, Gail J. ; Bullinger, Lars ; Lutsik, Pavlo ; Riedel, Anna ; Plass, Christoph ; Jahn, Nikolaus ; Walter, Claudia ; Holzmann, Karlheinz ; Hao, Yong ; Naim, Sue ; Schreck, Nicholas ; Krzykalla, Julia ; Benner, Axel ; Keer, Harold N. ; Azab, Mohammad ; Döhner, Konstanze ; Döhner, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>45/22</topic><topic>45/47</topic><topic>45/77</topic><topic>631/208/2489/144/68</topic><topic>631/208/2489/1512</topic><topic>631/67/1990/283/1897</topic><topic>692/308/2056</topic><topic>692/308/575</topic><topic>Acute myeloid leukemia</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Branches</topic><topic>Cancer Research</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Critical Care Medicine</topic><topic>DNA sequencing</topic><topic>fms-Like Tyrosine Kinase 3 - genetics</topic><topic>fms-Like Tyrosine Kinase 3 - therapeutic use</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Hematology</topic><topic>Hematopoiesis</topic><topic>Hemopoiesis</topic><topic>Humans</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - therapy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Modelling</topic><topic>Mutation</topic><topic>Nucleophosmin</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Risk</topic><topic>Risk groups</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahn, Ekaterina</creatorcontrib><creatorcontrib>Saadati, Maral</creatorcontrib><creatorcontrib>Fenaux, Pierre</creatorcontrib><creatorcontrib>Gobbi, Marco</creatorcontrib><creatorcontrib>Roboz, Gail J.</creatorcontrib><creatorcontrib>Bullinger, Lars</creatorcontrib><creatorcontrib>Lutsik, Pavlo</creatorcontrib><creatorcontrib>Riedel, Anna</creatorcontrib><creatorcontrib>Plass, Christoph</creatorcontrib><creatorcontrib>Jahn, Nikolaus</creatorcontrib><creatorcontrib>Walter, Claudia</creatorcontrib><creatorcontrib>Holzmann, Karlheinz</creatorcontrib><creatorcontrib>Hao, Yong</creatorcontrib><creatorcontrib>Naim, Sue</creatorcontrib><creatorcontrib>Schreck, Nicholas</creatorcontrib><creatorcontrib>Krzykalla, Julia</creatorcontrib><creatorcontrib>Benner, Axel</creatorcontrib><creatorcontrib>Keer, Harold N.</creatorcontrib><creatorcontrib>Azab, Mohammad</creatorcontrib><creatorcontrib>Döhner, Konstanze</creatorcontrib><creatorcontrib>Döhner, Hartmut</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahn, Ekaterina</au><au>Saadati, Maral</au><au>Fenaux, Pierre</au><au>Gobbi, Marco</au><au>Roboz, Gail J.</au><au>Bullinger, Lars</au><au>Lutsik, Pavlo</au><au>Riedel, Anna</au><au>Plass, Christoph</au><au>Jahn, Nikolaus</au><au>Walter, Claudia</au><au>Holzmann, Karlheinz</au><au>Hao, Yong</au><au>Naim, Sue</au><au>Schreck, Nicholas</au><au>Krzykalla, Julia</au><au>Benner, Axel</au><au>Keer, Harold N.</au><au>Azab, Mohammad</au><au>Döhner, Konstanze</au><au>Döhner, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>37</volume><issue>11</issue><spage>2187</spage><epage>2196</epage><pages>2187-2196</pages><issn>0887-6924</issn><issn>1476-5551</issn><eissn>1476-5551</eissn><abstract>To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes ( ASXL1 , TET2 , SRSF2 , DNMT3A ) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1 , DDX41 , DNMT3A , TET2 , and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2 , and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41 wildtype / FLT3 -ITD neg / TP53 wildtype (intermediate-risk), and FLT3 -ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37591941</pmid><doi>10.1038/s41375-023-01999-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2261-9862</orcidid><orcidid>https://orcid.org/0000-0003-2554-3952</orcidid><orcidid>https://orcid.org/0000-0003-2116-5536</orcidid><orcidid>https://orcid.org/0009-0001-0741-1166</orcidid><orcidid>https://orcid.org/0000-0002-7238-6956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2023-11, Vol.37 (11), p.2187-2196
issn 0887-6924
1476-5551
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10624608
source Nexis UK; Springer Nature
subjects 45/22
45/47
45/77
631/208/2489/144/68
631/208/2489/1512
631/67/1990/283/1897
692/308/2056
692/308/575
Acute myeloid leukemia
Aged
Algorithms
Branches
Cancer Research
Cluster analysis
Clustering
Critical Care Medicine
DNA sequencing
fms-Like Tyrosine Kinase 3 - genetics
fms-Like Tyrosine Kinase 3 - therapeutic use
Genes
Genetics
Genomics
Hematology
Hematopoiesis
Hemopoiesis
Humans
Intensive
Internal Medicine
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - therapy
Medicine
Medicine & Public Health
Modelling
Mutation
Nucleophosmin
Oncology
p53 Protein
Prognosis
Prospective Studies
Regression analysis
Regression models
Risk
Risk groups
Transcription Factors - genetics
title Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20impact%20of%20the%20genomic%20landscape%20and%20leukemogenic%20trajectories%20in%20non-intensively%20treated%20elderly%20acute%20myeloid%20leukemia%20patients&rft.jtitle=Leukemia&rft.au=Jahn,%20Ekaterina&rft.date=2023-11-01&rft.volume=37&rft.issue=11&rft.spage=2187&rft.epage=2196&rft.pages=2187-2196&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-023-01999-6&rft_dat=%3Cproquest_pubme%3E2885676535%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885676535&rft_id=info:pmid/37591941&rfr_iscdi=true