Loading…
Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients
To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a pros...
Saved in:
Published in: | Leukemia 2023-11, Vol.37 (11), p.2187-2196 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163 |
container_end_page | 2196 |
container_issue | 11 |
container_start_page | 2187 |
container_title | Leukemia |
container_volume | 37 |
creator | Jahn, Ekaterina Saadati, Maral Fenaux, Pierre Gobbi, Marco Roboz, Gail J. Bullinger, Lars Lutsik, Pavlo Riedel, Anna Plass, Christoph Jahn, Nikolaus Walter, Claudia Holzmann, Karlheinz Hao, Yong Naim, Sue Schreck, Nicholas Krzykalla, Julia Benner, Axel Keer, Harold N. Azab, Mohammad Döhner, Konstanze Döhner, Hartmut |
description | To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (
ASXL1
,
TET2
,
SRSF2
,
DNMT3A
) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with
ASXL1
,
DDX41
,
DNMT3A
,
TET2
, and
TP53
emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified
FLT3
internal tandem duplications (ITD),
SRSF2
, and
TP53
mutations as poor prognostic factors, while
DDX41
mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups:
DDX41
mutations (favorable-risk),
DDX41
wildtype
/
FLT3
-ITD
neg
/
TP53
wildtype
(intermediate-risk), and
FLT3
-ITD or
TP53
mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies. |
doi_str_mv | 10.1038/s41375-023-01999-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10624608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885676535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROD2jL-DCkLhxg0IVUMXKmM74k0ziRteEom710FJQAjVJP8K8tbQ9M_4sXAE53z33Xg5CLxh9w2jbv82ctZ0gtGkJZUopIh-hDeOdJEII9hhtaN93RKqGn6HznPeUHkX5FJ3VMsUUZxt0u_UuOGs8dvNibMFxwuUa8A5CnJ3F3oQxW7MArhfsYf0Oc6xilUoye7AlJgcZu4BDDMSFAiG7G_CHqoMpMGLwI6T6NnYtgOcD-OjurZzBiykOQsnP0JPJ-AzP784L9O3D5dftJ3L15ePn7fsrYnknChG2a6wRDTOW2kGqictBKGCMwwSs5yCkVKKfJg6NZDAOHR-ENJKqYbCWyfYCvTv5Lusww2hr72S8XpKbTTroaJz-WwnuWu_ijWZUNlzSvjq8vnNI8ccKuejZZQu-_hXENeumF63itOFtRV_9g-7jmkLdr1K9kJ0UrahUc6JsijknmB6mYVQfo9anqHWNWv-KWh_3ePnnHg8l99lWoD0BuUphB-l37__Y_gQ9I7jF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885676535</pqid></control><display><type>article</type><title>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</title><source>Nexis UK</source><source>Springer Nature</source><creator>Jahn, Ekaterina ; Saadati, Maral ; Fenaux, Pierre ; Gobbi, Marco ; Roboz, Gail J. ; Bullinger, Lars ; Lutsik, Pavlo ; Riedel, Anna ; Plass, Christoph ; Jahn, Nikolaus ; Walter, Claudia ; Holzmann, Karlheinz ; Hao, Yong ; Naim, Sue ; Schreck, Nicholas ; Krzykalla, Julia ; Benner, Axel ; Keer, Harold N. ; Azab, Mohammad ; Döhner, Konstanze ; Döhner, Hartmut</creator><creatorcontrib>Jahn, Ekaterina ; Saadati, Maral ; Fenaux, Pierre ; Gobbi, Marco ; Roboz, Gail J. ; Bullinger, Lars ; Lutsik, Pavlo ; Riedel, Anna ; Plass, Christoph ; Jahn, Nikolaus ; Walter, Claudia ; Holzmann, Karlheinz ; Hao, Yong ; Naim, Sue ; Schreck, Nicholas ; Krzykalla, Julia ; Benner, Axel ; Keer, Harold N. ; Azab, Mohammad ; Döhner, Konstanze ; Döhner, Hartmut</creatorcontrib><description>To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (
ASXL1
,
TET2
,
SRSF2
,
DNMT3A
) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with
ASXL1
,
DDX41
,
DNMT3A
,
TET2
, and
TP53
emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified
FLT3
internal tandem duplications (ITD),
SRSF2
, and
TP53
mutations as poor prognostic factors, while
DDX41
mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups:
DDX41
mutations (favorable-risk),
DDX41
wildtype
/
FLT3
-ITD
neg
/
TP53
wildtype
(intermediate-risk), and
FLT3
-ITD or
TP53
mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.</description><identifier>ISSN: 0887-6924</identifier><identifier>ISSN: 1476-5551</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-023-01999-6</identifier><identifier>PMID: 37591941</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/47 ; 45/77 ; 631/208/2489/144/68 ; 631/208/2489/1512 ; 631/67/1990/283/1897 ; 692/308/2056 ; 692/308/575 ; Acute myeloid leukemia ; Aged ; Algorithms ; Branches ; Cancer Research ; Cluster analysis ; Clustering ; Critical Care Medicine ; DNA sequencing ; fms-Like Tyrosine Kinase 3 - genetics ; fms-Like Tyrosine Kinase 3 - therapeutic use ; Genes ; Genetics ; Genomics ; Hematology ; Hematopoiesis ; Hemopoiesis ; Humans ; Intensive ; Internal Medicine ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - therapy ; Medicine ; Medicine & Public Health ; Modelling ; Mutation ; Nucleophosmin ; Oncology ; p53 Protein ; Prognosis ; Prospective Studies ; Regression analysis ; Regression models ; Risk ; Risk groups ; Transcription Factors - genetics</subject><ispartof>Leukemia, 2023-11, Vol.37 (11), p.2187-2196</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023, corrected publication 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</citedby><cites>FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</cites><orcidid>0000-0002-2261-9862 ; 0000-0003-2554-3952 ; 0000-0003-2116-5536 ; 0009-0001-0741-1166 ; 0000-0002-7238-6956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37591941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahn, Ekaterina</creatorcontrib><creatorcontrib>Saadati, Maral</creatorcontrib><creatorcontrib>Fenaux, Pierre</creatorcontrib><creatorcontrib>Gobbi, Marco</creatorcontrib><creatorcontrib>Roboz, Gail J.</creatorcontrib><creatorcontrib>Bullinger, Lars</creatorcontrib><creatorcontrib>Lutsik, Pavlo</creatorcontrib><creatorcontrib>Riedel, Anna</creatorcontrib><creatorcontrib>Plass, Christoph</creatorcontrib><creatorcontrib>Jahn, Nikolaus</creatorcontrib><creatorcontrib>Walter, Claudia</creatorcontrib><creatorcontrib>Holzmann, Karlheinz</creatorcontrib><creatorcontrib>Hao, Yong</creatorcontrib><creatorcontrib>Naim, Sue</creatorcontrib><creatorcontrib>Schreck, Nicholas</creatorcontrib><creatorcontrib>Krzykalla, Julia</creatorcontrib><creatorcontrib>Benner, Axel</creatorcontrib><creatorcontrib>Keer, Harold N.</creatorcontrib><creatorcontrib>Azab, Mohammad</creatorcontrib><creatorcontrib>Döhner, Konstanze</creatorcontrib><creatorcontrib>Döhner, Hartmut</creatorcontrib><title>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (
ASXL1
,
TET2
,
SRSF2
,
DNMT3A
) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with
ASXL1
,
DDX41
,
DNMT3A
,
TET2
, and
TP53
emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified
FLT3
internal tandem duplications (ITD),
SRSF2
, and
TP53
mutations as poor prognostic factors, while
DDX41
mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups:
DDX41
mutations (favorable-risk),
DDX41
wildtype
/
FLT3
-ITD
neg
/
TP53
wildtype
(intermediate-risk), and
FLT3
-ITD or
TP53
mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.</description><subject>45/22</subject><subject>45/47</subject><subject>45/77</subject><subject>631/208/2489/144/68</subject><subject>631/208/2489/1512</subject><subject>631/67/1990/283/1897</subject><subject>692/308/2056</subject><subject>692/308/575</subject><subject>Acute myeloid leukemia</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Branches</subject><subject>Cancer Research</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Critical Care Medicine</subject><subject>DNA sequencing</subject><subject>fms-Like Tyrosine Kinase 3 - genetics</subject><subject>fms-Like Tyrosine Kinase 3 - therapeutic use</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Hematology</subject><subject>Hematopoiesis</subject><subject>Hemopoiesis</subject><subject>Humans</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - therapy</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Modelling</subject><subject>Mutation</subject><subject>Nucleophosmin</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Risk</subject><subject>Risk groups</subject><subject>Transcription Factors - genetics</subject><issn>0887-6924</issn><issn>1476-5551</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhYnROD2jL-DCkLhxg0IVUMXKmM74k0ziRteEom710FJQAjVJP8K8tbQ9M_4sXAE53z33Xg5CLxh9w2jbv82ctZ0gtGkJZUopIh-hDeOdJEII9hhtaN93RKqGn6HznPeUHkX5FJ3VMsUUZxt0u_UuOGs8dvNibMFxwuUa8A5CnJ3F3oQxW7MArhfsYf0Oc6xilUoye7AlJgcZu4BDDMSFAiG7G_CHqoMpMGLwI6T6NnYtgOcD-OjurZzBiykOQsnP0JPJ-AzP784L9O3D5dftJ3L15ePn7fsrYnknChG2a6wRDTOW2kGqictBKGCMwwSs5yCkVKKfJg6NZDAOHR-ENJKqYbCWyfYCvTv5Lusww2hr72S8XpKbTTroaJz-WwnuWu_ijWZUNlzSvjq8vnNI8ccKuejZZQu-_hXENeumF63itOFtRV_9g-7jmkLdr1K9kJ0UrahUc6JsijknmB6mYVQfo9anqHWNWv-KWh_3ePnnHg8l99lWoD0BuUphB-l37__Y_gQ9I7jF</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Jahn, Ekaterina</creator><creator>Saadati, Maral</creator><creator>Fenaux, Pierre</creator><creator>Gobbi, Marco</creator><creator>Roboz, Gail J.</creator><creator>Bullinger, Lars</creator><creator>Lutsik, Pavlo</creator><creator>Riedel, Anna</creator><creator>Plass, Christoph</creator><creator>Jahn, Nikolaus</creator><creator>Walter, Claudia</creator><creator>Holzmann, Karlheinz</creator><creator>Hao, Yong</creator><creator>Naim, Sue</creator><creator>Schreck, Nicholas</creator><creator>Krzykalla, Julia</creator><creator>Benner, Axel</creator><creator>Keer, Harold N.</creator><creator>Azab, Mohammad</creator><creator>Döhner, Konstanze</creator><creator>Döhner, Hartmut</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2261-9862</orcidid><orcidid>https://orcid.org/0000-0003-2554-3952</orcidid><orcidid>https://orcid.org/0000-0003-2116-5536</orcidid><orcidid>https://orcid.org/0009-0001-0741-1166</orcidid><orcidid>https://orcid.org/0000-0002-7238-6956</orcidid></search><sort><creationdate>20231101</creationdate><title>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</title><author>Jahn, Ekaterina ; Saadati, Maral ; Fenaux, Pierre ; Gobbi, Marco ; Roboz, Gail J. ; Bullinger, Lars ; Lutsik, Pavlo ; Riedel, Anna ; Plass, Christoph ; Jahn, Nikolaus ; Walter, Claudia ; Holzmann, Karlheinz ; Hao, Yong ; Naim, Sue ; Schreck, Nicholas ; Krzykalla, Julia ; Benner, Axel ; Keer, Harold N. ; Azab, Mohammad ; Döhner, Konstanze ; Döhner, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>45/22</topic><topic>45/47</topic><topic>45/77</topic><topic>631/208/2489/144/68</topic><topic>631/208/2489/1512</topic><topic>631/67/1990/283/1897</topic><topic>692/308/2056</topic><topic>692/308/575</topic><topic>Acute myeloid leukemia</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Branches</topic><topic>Cancer Research</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Critical Care Medicine</topic><topic>DNA sequencing</topic><topic>fms-Like Tyrosine Kinase 3 - genetics</topic><topic>fms-Like Tyrosine Kinase 3 - therapeutic use</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Hematology</topic><topic>Hematopoiesis</topic><topic>Hemopoiesis</topic><topic>Humans</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - therapy</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Modelling</topic><topic>Mutation</topic><topic>Nucleophosmin</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Risk</topic><topic>Risk groups</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahn, Ekaterina</creatorcontrib><creatorcontrib>Saadati, Maral</creatorcontrib><creatorcontrib>Fenaux, Pierre</creatorcontrib><creatorcontrib>Gobbi, Marco</creatorcontrib><creatorcontrib>Roboz, Gail J.</creatorcontrib><creatorcontrib>Bullinger, Lars</creatorcontrib><creatorcontrib>Lutsik, Pavlo</creatorcontrib><creatorcontrib>Riedel, Anna</creatorcontrib><creatorcontrib>Plass, Christoph</creatorcontrib><creatorcontrib>Jahn, Nikolaus</creatorcontrib><creatorcontrib>Walter, Claudia</creatorcontrib><creatorcontrib>Holzmann, Karlheinz</creatorcontrib><creatorcontrib>Hao, Yong</creatorcontrib><creatorcontrib>Naim, Sue</creatorcontrib><creatorcontrib>Schreck, Nicholas</creatorcontrib><creatorcontrib>Krzykalla, Julia</creatorcontrib><creatorcontrib>Benner, Axel</creatorcontrib><creatorcontrib>Keer, Harold N.</creatorcontrib><creatorcontrib>Azab, Mohammad</creatorcontrib><creatorcontrib>Döhner, Konstanze</creatorcontrib><creatorcontrib>Döhner, Hartmut</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahn, Ekaterina</au><au>Saadati, Maral</au><au>Fenaux, Pierre</au><au>Gobbi, Marco</au><au>Roboz, Gail J.</au><au>Bullinger, Lars</au><au>Lutsik, Pavlo</au><au>Riedel, Anna</au><au>Plass, Christoph</au><au>Jahn, Nikolaus</au><au>Walter, Claudia</au><au>Holzmann, Karlheinz</au><au>Hao, Yong</au><au>Naim, Sue</au><au>Schreck, Nicholas</au><au>Krzykalla, Julia</au><au>Benner, Axel</au><au>Keer, Harold N.</au><au>Azab, Mohammad</au><au>Döhner, Konstanze</au><au>Döhner, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>37</volume><issue>11</issue><spage>2187</spage><epage>2196</epage><pages>2187-2196</pages><issn>0887-6924</issn><issn>1476-5551</issn><eissn>1476-5551</eissn><abstract>To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (
ASXL1
,
TET2
,
SRSF2
,
DNMT3A
) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with
ASXL1
,
DDX41
,
DNMT3A
,
TET2
, and
TP53
emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified
FLT3
internal tandem duplications (ITD),
SRSF2
, and
TP53
mutations as poor prognostic factors, while
DDX41
mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups:
DDX41
mutations (favorable-risk),
DDX41
wildtype
/
FLT3
-ITD
neg
/
TP53
wildtype
(intermediate-risk), and
FLT3
-ITD or
TP53
mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37591941</pmid><doi>10.1038/s41375-023-01999-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2261-9862</orcidid><orcidid>https://orcid.org/0000-0003-2554-3952</orcidid><orcidid>https://orcid.org/0000-0003-2116-5536</orcidid><orcidid>https://orcid.org/0009-0001-0741-1166</orcidid><orcidid>https://orcid.org/0000-0002-7238-6956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2023-11, Vol.37 (11), p.2187-2196 |
issn | 0887-6924 1476-5551 1476-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10624608 |
source | Nexis UK; Springer Nature |
subjects | 45/22 45/47 45/77 631/208/2489/144/68 631/208/2489/1512 631/67/1990/283/1897 692/308/2056 692/308/575 Acute myeloid leukemia Aged Algorithms Branches Cancer Research Cluster analysis Clustering Critical Care Medicine DNA sequencing fms-Like Tyrosine Kinase 3 - genetics fms-Like Tyrosine Kinase 3 - therapeutic use Genes Genetics Genomics Hematology Hematopoiesis Hemopoiesis Humans Intensive Internal Medicine Leukemia Leukemia, Myeloid, Acute - drug therapy Leukemia, Myeloid, Acute - therapy Medicine Medicine & Public Health Modelling Mutation Nucleophosmin Oncology p53 Protein Prognosis Prospective Studies Regression analysis Regression models Risk Risk groups Transcription Factors - genetics |
title | Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20impact%20of%20the%20genomic%20landscape%20and%20leukemogenic%20trajectories%20in%20non-intensively%20treated%20elderly%20acute%20myeloid%20leukemia%20patients&rft.jtitle=Leukemia&rft.au=Jahn,%20Ekaterina&rft.date=2023-11-01&rft.volume=37&rft.issue=11&rft.spage=2187&rft.epage=2196&rft.pages=2187-2196&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-023-01999-6&rft_dat=%3Cproquest_pubme%3E2885676535%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-5c72ca521ac0cb69f46b59e114efe184e566958ff4e261edb74b56a609bbcc163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885676535&rft_id=info:pmid/37591941&rfr_iscdi=true |