Loading…

Follicular lymphoma microenvironment: insights provided by single-cell analysis

Follicular lymphoma (FL) is the most frequent indolent lymphoma and is characterized by the abundant infiltration of tumor microenvironment (TME) cells. The activity of TME cells reportedly plays an important role in the biology of FL. TME cells that reside within neoplastic follicles, such as T-fol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Clinical and Experimental Hematopathology 2023, Vol.63(3), pp.143-151
Main Author: Abe, Yoshiaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Follicular lymphoma (FL) is the most frequent indolent lymphoma and is characterized by the abundant infiltration of tumor microenvironment (TME) cells. The activity of TME cells reportedly plays an important role in the biology of FL. TME cells that reside within neoplastic follicles, such as T-follicular helper cells and follicular dendritic cells, have been shown to aid in FL development and progression through interactions with malignant B cells, whereas regulatory T cells have unexpectedly shown an apparently favorable prognostic impact in FL. Unfortunately, the understanding of the FL TME, particularly regarding minor cell subsets, has been hampered by unknown cell heterogeneity. As with other solid and hematologic cancers, novel single-cell analysis technologies have recently been applied to FL research and have uncovered previously unrecognized heterogeneities, not only in malignant B cells but also in TME cells. These reports have greatly increased the resolution of our understanding of the FL TME and, at the same time, raised questions about newly identified TME cells. This review provides an overview of the unique aspects of FL TME cells with a clinical viewpoint and highlights recent discoveries from single-cell analysis, while also suggesting potential future directions.
ISSN:1346-4280
1880-9952
DOI:10.3960/jslrt.23012