Loading…

Determination of Stable Hydrogen Isotopic Composition and Isotope Enrichment Factor at Low Hydrogen Concentration

Determination of stable hydrogen isotopic compositions (δ2H) is currently challenged to achieve a high detection limit for reaching the linear range where δ2H values are independent of concentration. Therefore, it is difficult to assess precise δ2H values for calculating the hydrogen isotope enrichm...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2023-11, Vol.95 (44), p.16272-16278
Main Authors: Liu, Xiao, Wu, Langping, Kümmel, Steffen, Gehre, Matthias, Richnow, Hans Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Determination of stable hydrogen isotopic compositions (δ2H) is currently challenged to achieve a high detection limit for reaching the linear range where δ2H values are independent of concentration. Therefore, it is difficult to assess precise δ2H values for calculating the hydrogen isotope enrichment factor (εH) and for field application where the concentrations of contaminants are relatively low. In this study, a data treatment approach was developed to obtain accurate δ2H values below the linear range. The core concept was to use a logarithmic function to fit the δ2H values below the linear range and then adjust the δ2H values below the linear range into the linear range by using the fitted logarithmic equation. Moreover, the adjusted δ2H values were calibrated by using laboratory reference materials, e.g., n-alkanes. Tris­(2-chloroethyl) phosphate (TCEP) and hexachlorocyclohexane (HCH) isomers were selected as examples of complex heteroatom-bearing compounds to develop the data treatment approach. This data treatment approach was then tested using δ2H values from a TCEP transformation experiment with OH radicals. Comparable δ2H values and εH between the low-concentration experiment and the reference experiment were obtained using the developed approach. Therefore, the developed data treatment approach enables a possibility of determining the hydrogen isotopic compositions of organic components in low concentrations. It is especially valuable for determining organic contaminants in environmental samples, which are usually present in low concentrations.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c03214