Loading…
Towards the synthesis of spectral imaging and machine learning-based approaches for non-invasive phenotyping of plants
High-throughput phenotyping is now central to the progress of plant sciences, accelerated breeding, and precision farming. The power of phenotyping comes from the automated, rapid, non-invasive collection of large datasets describing plant objects. In this context, the goal of extracting relevant in...
Saved in:
Published in: | Biophysical reviews 2023-10, Vol.15 (5), p.939-946 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-throughput phenotyping is now central to the progress of plant sciences, accelerated breeding, and precision farming. The power of phenotyping comes from the automated, rapid, non-invasive collection of large datasets describing plant objects. In this context, the goal of extracting relevant information from different kinds of images is of paramount importance. We review both the spectral and machine learning-based approaches to imaging of plants for the purpose of their phenotyping. The advantages and drawbacks of both approaches will be discussed with a focus on the monitoring of plants. We argue that an emerging approach combining the strengths of the spectral and the machine learning-based approaches will remain a promising direction in plant phenotyping in the nearest future. |
---|---|
ISSN: | 1867-2450 1867-2469 |
DOI: | 10.1007/s12551-023-01125-x |