Loading…
Machine Learning as a Model for Cultural Learning: Teaching an Algorithm What it Means to be Fat
Public culture is a powerful source of cognitive socialization; for example, media language is full of meanings about body weight. Yet it remains unclear how individuals process meanings in public culture. We suggest that schema learning is a core mechanism by which public culture becomes personal c...
Saved in:
Published in: | Sociological methods & research 2022-11, Vol.51 (4), p.1484-1539 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Public culture is a powerful source of cognitive socialization; for example, media language is full of meanings about body weight. Yet it remains unclear how individuals process meanings in public culture. We suggest that schema learning is a core mechanism by which public culture becomes personal culture. We propose that a burgeoning approach in computational text analysis – neural word embeddings – can be interpreted as a formal model for cultural learning. Embeddings allow us to empirically model schema learning and activation from natural language data. We illustrate our approach by extracting four lower-order schemas from news articles: the gender, moral, health, and class meanings of body weight. Using these lower-order schemas we quantify how words about body weight “fill in the blanks” about gender, morality, health, and class. Our findings reinforce ongoing concerns that machine-learning models (e.g., of natural language) can encode and reproduce harmful human biases. |
---|---|
ISSN: | 0049-1241 1552-8294 |
DOI: | 10.1177/00491241221122603 |