Loading…
Dimerization mechanism of an inverted-topology ion channel in membranes
Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2023-11, Vol.120 (47), p.e2308454120-e2308454120 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273 |
container_end_page | e2308454120 |
container_issue | 47 |
container_start_page | e2308454120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Ernst, Melanie Orabi, Esam A Stockbridge, Randy B Faraldo-Gómez, José D Robertson, Janice L |
description | Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na
binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na
binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na
. Quantifying the thermodynamic stability while titrating Na
indicates that dimerization occurs first, providing a membrane-embedded binding site where Na
binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na
binding, result in channel activation. |
doi_str_mv | 10.1073/pnas.2308454120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10666096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892714845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EomU5c0ORuHBJ6y12fEKIpSAhcYGz5SST1lViFztFgl-PK6AspznMN2_mzUPohOAJwZJNV87ECWW45AUnFO-gMcGK5IIrvIvGGFOZl5zyETqIcYkxVkWJ99GISVUIKtUYza5tD8G-m8F6l_VQL4yzsc98mxmXWfcKYYAmH_zKd37-lm2oDeOgS9000FfBOIhHaK81XYTjr3qInm9vnq7u8ofH2f3V5UNec0qHnFS1IIZxKrCismUNaWsjSQnCcCkZVFSKoiAgmgobCVA1oi6MaAwtS15SyQ7Rxafual310NTghmA6vQq2N-FNe2P1346zCz33r5pgIdJSkRTOvxSCf1lDHHRvYw1dl2z4ddRpk1JKlJQl9OwfuvTr4JK_RKX7CU9_T9T0k6qDjzFAu72GYL1JSW9S0j8ppYnT3ya2_Hcs7AOMlI7D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892714845</pqid></control><display><type>article</type><title>Dimerization mechanism of an inverted-topology ion channel in membranes</title><source>Open Access: PubMed Central</source><creator>Ernst, Melanie ; Orabi, Esam A ; Stockbridge, Randy B ; Faraldo-Gómez, José D ; Robertson, Janice L</creator><creatorcontrib>Ernst, Melanie ; Orabi, Esam A ; Stockbridge, Randy B ; Faraldo-Gómez, José D ; Robertson, Janice L</creatorcontrib><description>Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na
binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na
binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na
. Quantifying the thermodynamic stability while titrating Na
indicates that dimerization occurs first, providing a membrane-embedded binding site where Na
binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na
binding, result in channel activation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2308454120</identifier><identifier>PMID: 37956279</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Assembly ; Binding Sites ; Biological Sciences ; Defects ; Dimerization ; Dimers ; Fluorides ; Interface stability ; Ion channels ; Ion Channels - metabolism ; Lipid bilayers ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Molecular dynamics ; Oligomerization ; Physical Sciences ; Stable channels ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (47), p.e2308454120-e2308454120</ispartof><rights>Copyright National Academy of Sciences Nov 21, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</citedby><cites>FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</cites><orcidid>0000-0002-5499-9943 ; 0000-0001-8848-3032 ; 0000-0002-8995-3507 ; 0000-0001-7224-7676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37956279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernst, Melanie</creatorcontrib><creatorcontrib>Orabi, Esam A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Robertson, Janice L</creatorcontrib><title>Dimerization mechanism of an inverted-topology ion channel in membranes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na
binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na
binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na
. Quantifying the thermodynamic stability while titrating Na
indicates that dimerization occurs first, providing a membrane-embedded binding site where Na
binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na
binding, result in channel activation.</description><subject>Assembly</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Defects</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Fluorides</subject><subject>Interface stability</subject><subject>Ion channels</subject><subject>Ion Channels - metabolism</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Oligomerization</subject><subject>Physical Sciences</subject><subject>Stable channels</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQhS0EomU5c0ORuHBJ6y12fEKIpSAhcYGz5SST1lViFztFgl-PK6AspznMN2_mzUPohOAJwZJNV87ECWW45AUnFO-gMcGK5IIrvIvGGFOZl5zyETqIcYkxVkWJ99GISVUIKtUYza5tD8G-m8F6l_VQL4yzsc98mxmXWfcKYYAmH_zKd37-lm2oDeOgS9000FfBOIhHaK81XYTjr3qInm9vnq7u8ofH2f3V5UNec0qHnFS1IIZxKrCismUNaWsjSQnCcCkZVFSKoiAgmgobCVA1oi6MaAwtS15SyQ7Rxafual310NTghmA6vQq2N-FNe2P1346zCz33r5pgIdJSkRTOvxSCf1lDHHRvYw1dl2z4ddRpk1JKlJQl9OwfuvTr4JK_RKX7CU9_T9T0k6qDjzFAu72GYL1JSW9S0j8ppYnT3ya2_Hcs7AOMlI7D</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Ernst, Melanie</creator><creator>Orabi, Esam A</creator><creator>Stockbridge, Randy B</creator><creator>Faraldo-Gómez, José D</creator><creator>Robertson, Janice L</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5499-9943</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0002-8995-3507</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid></search><sort><creationdate>20231121</creationdate><title>Dimerization mechanism of an inverted-topology ion channel in membranes</title><author>Ernst, Melanie ; Orabi, Esam A ; Stockbridge, Randy B ; Faraldo-Gómez, José D ; Robertson, Janice L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Assembly</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Defects</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Fluorides</topic><topic>Interface stability</topic><topic>Ion channels</topic><topic>Ion Channels - metabolism</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Oligomerization</topic><topic>Physical Sciences</topic><topic>Stable channels</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernst, Melanie</creatorcontrib><creatorcontrib>Orabi, Esam A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Robertson, Janice L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernst, Melanie</au><au>Orabi, Esam A</au><au>Stockbridge, Randy B</au><au>Faraldo-Gómez, José D</au><au>Robertson, Janice L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimerization mechanism of an inverted-topology ion channel in membranes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-11-21</date><risdate>2023</risdate><volume>120</volume><issue>47</issue><spage>e2308454120</spage><epage>e2308454120</epage><pages>e2308454120-e2308454120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na
binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na
binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na
. Quantifying the thermodynamic stability while titrating Na
indicates that dimerization occurs first, providing a membrane-embedded binding site where Na
binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na
binding, result in channel activation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37956279</pmid><doi>10.1073/pnas.2308454120</doi><orcidid>https://orcid.org/0000-0002-5499-9943</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0002-8995-3507</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (47), p.e2308454120-e2308454120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10666096 |
source | Open Access: PubMed Central |
subjects | Assembly Binding Sites Biological Sciences Defects Dimerization Dimers Fluorides Interface stability Ion channels Ion Channels - metabolism Lipid bilayers Lipid Bilayers - chemistry Lipids Membranes Molecular dynamics Oligomerization Physical Sciences Stable channels Topology |
title | Dimerization mechanism of an inverted-topology ion channel in membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimerization%20mechanism%20of%20an%20inverted-topology%20ion%20channel%20in%20membranes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ernst,%20Melanie&rft.date=2023-11-21&rft.volume=120&rft.issue=47&rft.spage=e2308454120&rft.epage=e2308454120&rft.pages=e2308454120-e2308454120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2308454120&rft_dat=%3Cproquest_pubme%3E2892714845%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892714845&rft_id=info:pmid/37956279&rfr_iscdi=true |