Loading…

Dimerization mechanism of an inverted-topology ion channel in membranes

Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-11, Vol.120 (47), p.e2308454120-e2308454120
Main Authors: Ernst, Melanie, Orabi, Esam A, Stockbridge, Randy B, Faraldo-Gómez, José D, Robertson, Janice L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273
cites cdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273
container_end_page e2308454120
container_issue 47
container_start_page e2308454120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Ernst, Melanie
Orabi, Esam A
Stockbridge, Randy B
Faraldo-Gómez, José D
Robertson, Janice L
description Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na . Quantifying the thermodynamic stability while titrating Na indicates that dimerization occurs first, providing a membrane-embedded binding site where Na binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na binding, result in channel activation.
doi_str_mv 10.1073/pnas.2308454120
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10666096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892714845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EomU5c0ORuHBJ6y12fEKIpSAhcYGz5SST1lViFztFgl-PK6AspznMN2_mzUPohOAJwZJNV87ECWW45AUnFO-gMcGK5IIrvIvGGFOZl5zyETqIcYkxVkWJ99GISVUIKtUYza5tD8G-m8F6l_VQL4yzsc98mxmXWfcKYYAmH_zKd37-lm2oDeOgS9000FfBOIhHaK81XYTjr3qInm9vnq7u8ofH2f3V5UNec0qHnFS1IIZxKrCismUNaWsjSQnCcCkZVFSKoiAgmgobCVA1oi6MaAwtS15SyQ7Rxafual310NTghmA6vQq2N-FNe2P1346zCz33r5pgIdJSkRTOvxSCf1lDHHRvYw1dl2z4ddRpk1JKlJQl9OwfuvTr4JK_RKX7CU9_T9T0k6qDjzFAu72GYL1JSW9S0j8ppYnT3ya2_Hcs7AOMlI7D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892714845</pqid></control><display><type>article</type><title>Dimerization mechanism of an inverted-topology ion channel in membranes</title><source>Open Access: PubMed Central</source><creator>Ernst, Melanie ; Orabi, Esam A ; Stockbridge, Randy B ; Faraldo-Gómez, José D ; Robertson, Janice L</creator><creatorcontrib>Ernst, Melanie ; Orabi, Esam A ; Stockbridge, Randy B ; Faraldo-Gómez, José D ; Robertson, Janice L</creatorcontrib><description>Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na . Quantifying the thermodynamic stability while titrating Na indicates that dimerization occurs first, providing a membrane-embedded binding site where Na binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na binding, result in channel activation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2308454120</identifier><identifier>PMID: 37956279</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Assembly ; Binding Sites ; Biological Sciences ; Defects ; Dimerization ; Dimers ; Fluorides ; Interface stability ; Ion channels ; Ion Channels - metabolism ; Lipid bilayers ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Molecular dynamics ; Oligomerization ; Physical Sciences ; Stable channels ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (47), p.e2308454120-e2308454120</ispartof><rights>Copyright National Academy of Sciences Nov 21, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</citedby><cites>FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</cites><orcidid>0000-0002-5499-9943 ; 0000-0001-8848-3032 ; 0000-0002-8995-3507 ; 0000-0001-7224-7676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37956279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernst, Melanie</creatorcontrib><creatorcontrib>Orabi, Esam A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Robertson, Janice L</creatorcontrib><title>Dimerization mechanism of an inverted-topology ion channel in membranes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na . Quantifying the thermodynamic stability while titrating Na indicates that dimerization occurs first, providing a membrane-embedded binding site where Na binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na binding, result in channel activation.</description><subject>Assembly</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Defects</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Fluorides</subject><subject>Interface stability</subject><subject>Ion channels</subject><subject>Ion Channels - metabolism</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Oligomerization</subject><subject>Physical Sciences</subject><subject>Stable channels</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQhS0EomU5c0ORuHBJ6y12fEKIpSAhcYGz5SST1lViFztFgl-PK6AspznMN2_mzUPohOAJwZJNV87ECWW45AUnFO-gMcGK5IIrvIvGGFOZl5zyETqIcYkxVkWJ99GISVUIKtUYza5tD8G-m8F6l_VQL4yzsc98mxmXWfcKYYAmH_zKd37-lm2oDeOgS9000FfBOIhHaK81XYTjr3qInm9vnq7u8ofH2f3V5UNec0qHnFS1IIZxKrCismUNaWsjSQnCcCkZVFSKoiAgmgobCVA1oi6MaAwtS15SyQ7Rxafual310NTghmA6vQq2N-FNe2P1346zCz33r5pgIdJSkRTOvxSCf1lDHHRvYw1dl2z4ddRpk1JKlJQl9OwfuvTr4JK_RKX7CU9_T9T0k6qDjzFAu72GYL1JSW9S0j8ppYnT3ya2_Hcs7AOMlI7D</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Ernst, Melanie</creator><creator>Orabi, Esam A</creator><creator>Stockbridge, Randy B</creator><creator>Faraldo-Gómez, José D</creator><creator>Robertson, Janice L</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5499-9943</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0002-8995-3507</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid></search><sort><creationdate>20231121</creationdate><title>Dimerization mechanism of an inverted-topology ion channel in membranes</title><author>Ernst, Melanie ; Orabi, Esam A ; Stockbridge, Randy B ; Faraldo-Gómez, José D ; Robertson, Janice L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Assembly</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Defects</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Fluorides</topic><topic>Interface stability</topic><topic>Ion channels</topic><topic>Ion Channels - metabolism</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Oligomerization</topic><topic>Physical Sciences</topic><topic>Stable channels</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernst, Melanie</creatorcontrib><creatorcontrib>Orabi, Esam A</creatorcontrib><creatorcontrib>Stockbridge, Randy B</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Robertson, Janice L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernst, Melanie</au><au>Orabi, Esam A</au><au>Stockbridge, Randy B</au><au>Faraldo-Gómez, José D</au><au>Robertson, Janice L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimerization mechanism of an inverted-topology ion channel in membranes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-11-21</date><risdate>2023</risdate><volume>120</volume><issue>47</issue><spage>e2308454120</spage><epage>e2308454120</epage><pages>e2308454120-e2308454120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na . Quantifying the thermodynamic stability while titrating Na indicates that dimerization occurs first, providing a membrane-embedded binding site where Na binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na binding, result in channel activation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37956279</pmid><doi>10.1073/pnas.2308454120</doi><orcidid>https://orcid.org/0000-0002-5499-9943</orcidid><orcidid>https://orcid.org/0000-0001-8848-3032</orcidid><orcidid>https://orcid.org/0000-0002-8995-3507</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (47), p.e2308454120-e2308454120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10666096
source Open Access: PubMed Central
subjects Assembly
Binding Sites
Biological Sciences
Defects
Dimerization
Dimers
Fluorides
Interface stability
Ion channels
Ion Channels - metabolism
Lipid bilayers
Lipid Bilayers - chemistry
Lipids
Membranes
Molecular dynamics
Oligomerization
Physical Sciences
Stable channels
Topology
title Dimerization mechanism of an inverted-topology ion channel in membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimerization%20mechanism%20of%20an%20inverted-topology%20ion%20channel%20in%20membranes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ernst,%20Melanie&rft.date=2023-11-21&rft.volume=120&rft.issue=47&rft.spage=e2308454120&rft.epage=e2308454120&rft.pages=e2308454120-e2308454120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2308454120&rft_dat=%3Cproquest_pubme%3E2892714845%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-1bc61a34260927f3d1fca718e6a4773eb276551e6db0a7eebd6c5a6da28848273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892714845&rft_id=info:pmid/37956279&rfr_iscdi=true