Loading…

Coronary artery calcium score and pre-test probabilities as gatekeepers to predict and rule out perfusion defects in positron emission tomography

Little is known about the gatekeeper performance of coronary artery calcium score (CACS) before myocardial perfusion positron emission tomography (PET), compared with updated pre-test probabilities from American and European guidelines (pre-test-AHA/ACC, pre-test-ESC). We enrolled participants witho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear cardiology 2023-12, Vol.30 (6), p.2559-2573
Main Authors: Clerc, Olivier F., Frey, Simon M., Honegger, Ursina, Amrein, Melissa L.F., Caobelli, Federico, Haaf, Philip, Zellweger, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Little is known about the gatekeeper performance of coronary artery calcium score (CACS) before myocardial perfusion positron emission tomography (PET), compared with updated pre-test probabilities from American and European guidelines (pre-test-AHA/ACC, pre-test-ESC). We enrolled participants without known coronary artery disease undergoing CACS and Rubidium-82 PET. Abnormal perfusion was defined as summed stress score ≥ 4. Using Bayes’ formula, pre-test probabilities and CACS were combined into post-test probabilities. We included 2050 participants (54% male, mean age 64.6 years) with median CACS 62 (IQR 0-380), pre-test-ESC 17% (11-26), pre-test-AHA/ACC 27% (16-44), and abnormal perfusion in 437 participants (21%). To predict abnormal perfusion, area under the curve of CACS was 0.81, pre-test-AHA/ACC 0.68, pre-test-ESC 0.69, post-test-AHA/ACC 0.80, and post-test-ESC 0.81 (P < 0.001 for CACS vs. each pre-test, and each post-test vs. pre-test). CACS = 0 had 97% negative predictive value (NPV), pre-test-AHA/ACC ≤ 5% 100%, pre-test-ESC ≤ 5% 98%, post-test-AHA/ACC ≤ 5% 98%, and post-test-ESC ≤ 5% 96%. Among participants, 26% had CACS = 0, 2% pre-test-AHA/ACC ≤ 5%, 7% pre-test-ESC ≤ 5%, 23% post-test-AHA/ACC ≤ 5%, and 33% post-test-ESC ≤ 5% (all P < 0.001). CACS and post-test probabilities are excellent predictors of abnormal perfusion and can rule it out with very high NPV in a substantial proportion of participants. CACS and post-test probabilities may be used as gatekeepers before advanced imaging. Coronary artery calcium score (CACS) predicted abnormal perfusion (SSS ≥ 4) in myocardial positron emission tomography (PET) better than pre-test probabilities of coronary artery disease (CAD), while pre-test-AHA/ACC and pre-test-ESC performed similarly (left). Using Bayes’ formula, pre-test-AHA/ACC or pre-test-ESC were combined with CACS into post-test probabilities (middle). This calculation reclassified a substantial proportion of participants to low probability of CAD (0-5%), not needing further imaging, as shown for AHA/ACC probabilities (2% with pre-test-AHA/ACC to 23% with post-test-AHA/ACC, P < 0.001, right). Very few participants with abnormal perfusion were classified under pre-test or post-test probabilities 0-5%, or under CACS 0. AUC: area under the curve. Pre-test-AHA/ACC: Pre-test probability of the American Heart Association/American College of Cardiology. Post-test-AHA/ACC: Post-test probability combining pre-test-AHA/ACC and CACS. Pre-test-ESC:
ISSN:1071-3581
1532-6551
1532-6551
DOI:10.1007/s12350-023-03322-3