Loading…

Ultraviolet photodissociation and collision-induced dissociation for qualitative/quantitative analysis of low molecular weight compounds by liquid chromatography-mass spectrometry

Collision-induced dissociation (CID) is the most wildly used fragmentation technique for qualitative and quantitative determination of low molecular weight compounds (LMWC). Ultraviolet photodissociation (UVPD) has been mainly investigated for the analysis of peptides and lipids while only in a limi...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2023-12, Vol.415 (29-30), p.7117-7126
Main Authors: Giraud, Romain, Le Blanc, Yves J. C., Guna, Mircea, Hopfgartner, Gérard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collision-induced dissociation (CID) is the most wildly used fragmentation technique for qualitative and quantitative determination of low molecular weight compounds (LMWC). Ultraviolet photodissociation (UVPD) has been mainly investigated for the analysis of peptides and lipids while only in a limited way for LMWC. A triple quadrupole linear ion trap instrument has been modified to allow ultraviolet photodissociation (UVPD) in the end of the q2 region enabling various workflows with and without data-dependent acquisition (DDA) combining CID and UVPD in the same LC–MS analysis. The performance of UVPD, with a 266-nm laser, is compared to CID for a mix of 90 molecules from different classes of LMWC including peptides, pesticides, pharmaceuticals, metabolites, and drugs of abuse. These two activation methods offer complementary fragments as well as common fragments with similar sensitivities for most analytes investigated. The versatility of UVPD and CID is also demonstrated for quantitative analysis in human plasma of bosentan and its desmethyl metabolite, used as model analytes. Different background signals are observed for both fragmentation methods as well as unique fragments which opens the possibility of developing a selective quantitative assay with improved sample throughput, in particular for analytes present in different matrices. Graphical Abstract
ISSN:1618-2642
1618-2650
1618-2650
DOI:10.1007/s00216-023-04977-0