Loading…

Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes

Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2023-12, Vol.299 (12), p.105407, Article 105407
Main Authors: Wu, Heng, Kren, Betsy T., Lane, Andrew N., Cassel, Teresa A., Higashi, Richard M., Fan, Teresa W.M., Scaria, George S., Shekels, Laurie L., Klein, Mark A., Albrecht, Jeffrey H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3
cites cdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3
container_end_page
container_issue 12
container_start_page 105407
container_title The Journal of biological chemistry
container_volume 299
creator Wu, Heng
Kren, Betsy T.
Lane, Andrew N.
Cassel, Teresa A.
Higashi, Richard M.
Fan, Teresa W.M.
Scaria, George S.
Shekels, Laurie L.
Klein, Mark A.
Albrecht, Jeffrey H.
description Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.
doi_str_mv 10.1016/j.jbc.2023.105407
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823024353</els_id><sourcerecordid>2907195433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</originalsourceid><addsrcrecordid>eNp9kUFrHCEUx6W0NJtNPkAuxWMvs1FnXJUeStk2SSHQSwuBHMTRt1mXmXGi7qbz7WPYJKSXepGH__d78n4InVGyoIQuz7eLbWsXjLC61Lwh4h2aUSLrqub05j2aEcJopRiXR-g4pS0pp1H0IzqqJeVMNmqGbleT7fyAv1MMfzMMye-hm3CEMYa7aPqEe8imDZ1PPc4Bp904hphx60OahryB7C0eTd48mCnhAtpAqYKdMqQT9GFtugSnz_cc_bn48Xt1VV3_uvy5-nZd2YazXFnunHDQKiGZJEuhFHUEWCOZ44IKgDVYa4hrmloBASW5k85KwahiwhJTz9HXA3fctT04C0OOptNj9L2Jkw7G639fBr_Rd2GvKVkWTFnYHH1-JsRwv4OUde-Tha4zA4Rd0kwRQRVv6rpE6SFqY0gpwvp1DiX6yYre6mJFP1nRByul59PbD752vGgogS-HAJQ17T1EnayHwYLzEWzWLvj_4B8BogCgCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907195433</pqid></control><display><type>article</type><title>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Wu, Heng ; Kren, Betsy T. ; Lane, Andrew N. ; Cassel, Teresa A. ; Higashi, Richard M. ; Fan, Teresa W.M. ; Scaria, George S. ; Shekels, Laurie L. ; Klein, Mark A. ; Albrecht, Jeffrey H.</creator><creatorcontrib>Wu, Heng ; Kren, Betsy T. ; Lane, Andrew N. ; Cassel, Teresa A. ; Higashi, Richard M. ; Fan, Teresa W.M. ; Scaria, George S. ; Shekels, Laurie L. ; Klein, Mark A. ; Albrecht, Jeffrey H.</creatorcontrib><description>Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105407</identifier><identifier>PMID: 38152849</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aldolase ; anaerobic glycolysis ; Animals ; BAY 2402234 ; Biosynthetic Pathways ; cell cycle ; Cell Line ; Collection: Molecular Bases of Disease ; cyclin D1 ; Cyclin D1 - genetics ; Cyclin D1 - metabolism ; Cyclin-Dependent Kinase 4 - metabolism ; glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ; Hepatocytes - metabolism ; Humans ; liver regeneration ; Mice ; palbociclib ; pentose phosphate pathway (PPP) ; Proteomics ; purine ; pyrimidine ; Pyrimidines - biosynthesis</subject><ispartof>The Journal of biological chemistry, 2023-12, Vol.299 (12), p.105407, Article 105407</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</citedby><cites>FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</cites><orcidid>0000-0003-3457-6879 ; 0000-0003-1121-5106 ; 0000-0002-3256-0622 ; 0000-0002-7292-8938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687208/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925823024353$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38152849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kren, Betsy T.</creatorcontrib><creatorcontrib>Lane, Andrew N.</creatorcontrib><creatorcontrib>Cassel, Teresa A.</creatorcontrib><creatorcontrib>Higashi, Richard M.</creatorcontrib><creatorcontrib>Fan, Teresa W.M.</creatorcontrib><creatorcontrib>Scaria, George S.</creatorcontrib><creatorcontrib>Shekels, Laurie L.</creatorcontrib><creatorcontrib>Klein, Mark A.</creatorcontrib><creatorcontrib>Albrecht, Jeffrey H.</creatorcontrib><title>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.</description><subject>aldolase</subject><subject>anaerobic glycolysis</subject><subject>Animals</subject><subject>BAY 2402234</subject><subject>Biosynthetic Pathways</subject><subject>cell cycle</subject><subject>Cell Line</subject><subject>Collection: Molecular Bases of Disease</subject><subject>cyclin D1</subject><subject>Cyclin D1 - genetics</subject><subject>Cyclin D1 - metabolism</subject><subject>Cyclin-Dependent Kinase 4 - metabolism</subject><subject>glyceraldehyde-3-phosphate dehydrogenase (GAPDH)</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>liver regeneration</subject><subject>Mice</subject><subject>palbociclib</subject><subject>pentose phosphate pathway (PPP)</subject><subject>Proteomics</subject><subject>purine</subject><subject>pyrimidine</subject><subject>Pyrimidines - biosynthesis</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUx6W0NJtNPkAuxWMvs1FnXJUeStk2SSHQSwuBHMTRt1mXmXGi7qbz7WPYJKSXepGH__d78n4InVGyoIQuz7eLbWsXjLC61Lwh4h2aUSLrqub05j2aEcJopRiXR-g4pS0pp1H0IzqqJeVMNmqGbleT7fyAv1MMfzMMye-hm3CEMYa7aPqEe8imDZ1PPc4Bp904hphx60OahryB7C0eTd48mCnhAtpAqYKdMqQT9GFtugSnz_cc_bn48Xt1VV3_uvy5-nZd2YazXFnunHDQKiGZJEuhFHUEWCOZ44IKgDVYa4hrmloBASW5k85KwahiwhJTz9HXA3fctT04C0OOptNj9L2Jkw7G639fBr_Rd2GvKVkWTFnYHH1-JsRwv4OUde-Tha4zA4Rd0kwRQRVv6rpE6SFqY0gpwvp1DiX6yYre6mJFP1nRByul59PbD752vGgogS-HAJQ17T1EnayHwYLzEWzWLvj_4B8BogCgCQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wu, Heng</creator><creator>Kren, Betsy T.</creator><creator>Lane, Andrew N.</creator><creator>Cassel, Teresa A.</creator><creator>Higashi, Richard M.</creator><creator>Fan, Teresa W.M.</creator><creator>Scaria, George S.</creator><creator>Shekels, Laurie L.</creator><creator>Klein, Mark A.</creator><creator>Albrecht, Jeffrey H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3457-6879</orcidid><orcidid>https://orcid.org/0000-0003-1121-5106</orcidid><orcidid>https://orcid.org/0000-0002-3256-0622</orcidid><orcidid>https://orcid.org/0000-0002-7292-8938</orcidid></search><sort><creationdate>20231201</creationdate><title>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</title><author>Wu, Heng ; Kren, Betsy T. ; Lane, Andrew N. ; Cassel, Teresa A. ; Higashi, Richard M. ; Fan, Teresa W.M. ; Scaria, George S. ; Shekels, Laurie L. ; Klein, Mark A. ; Albrecht, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aldolase</topic><topic>anaerobic glycolysis</topic><topic>Animals</topic><topic>BAY 2402234</topic><topic>Biosynthetic Pathways</topic><topic>cell cycle</topic><topic>Cell Line</topic><topic>Collection: Molecular Bases of Disease</topic><topic>cyclin D1</topic><topic>Cyclin D1 - genetics</topic><topic>Cyclin D1 - metabolism</topic><topic>Cyclin-Dependent Kinase 4 - metabolism</topic><topic>glyceraldehyde-3-phosphate dehydrogenase (GAPDH)</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>liver regeneration</topic><topic>Mice</topic><topic>palbociclib</topic><topic>pentose phosphate pathway (PPP)</topic><topic>Proteomics</topic><topic>purine</topic><topic>pyrimidine</topic><topic>Pyrimidines - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kren, Betsy T.</creatorcontrib><creatorcontrib>Lane, Andrew N.</creatorcontrib><creatorcontrib>Cassel, Teresa A.</creatorcontrib><creatorcontrib>Higashi, Richard M.</creatorcontrib><creatorcontrib>Fan, Teresa W.M.</creatorcontrib><creatorcontrib>Scaria, George S.</creatorcontrib><creatorcontrib>Shekels, Laurie L.</creatorcontrib><creatorcontrib>Klein, Mark A.</creatorcontrib><creatorcontrib>Albrecht, Jeffrey H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Heng</au><au>Kren, Betsy T.</au><au>Lane, Andrew N.</au><au>Cassel, Teresa A.</au><au>Higashi, Richard M.</au><au>Fan, Teresa W.M.</au><au>Scaria, George S.</au><au>Shekels, Laurie L.</au><au>Klein, Mark A.</au><au>Albrecht, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>299</volume><issue>12</issue><spage>105407</spage><pages>105407-</pages><artnum>105407</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38152849</pmid><doi>10.1016/j.jbc.2023.105407</doi><orcidid>https://orcid.org/0000-0003-3457-6879</orcidid><orcidid>https://orcid.org/0000-0003-1121-5106</orcidid><orcidid>https://orcid.org/0000-0002-3256-0622</orcidid><orcidid>https://orcid.org/0000-0002-7292-8938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-12, Vol.299 (12), p.105407, Article 105407
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687208
source Open Access: PubMed Central; ScienceDirect Journals
subjects aldolase
anaerobic glycolysis
Animals
BAY 2402234
Biosynthetic Pathways
cell cycle
Cell Line
Collection: Molecular Bases of Disease
cyclin D1
Cyclin D1 - genetics
Cyclin D1 - metabolism
Cyclin-Dependent Kinase 4 - metabolism
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
Hepatocytes - metabolism
Humans
liver regeneration
Mice
palbociclib
pentose phosphate pathway (PPP)
Proteomics
purine
pyrimidine
Pyrimidines - biosynthesis
title Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclin%20D1%20extensively%20reprograms%20metabolism%20to%20support%20biosynthetic%20pathways%20in%20hepatocytes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wu,%20Heng&rft.date=2023-12-01&rft.volume=299&rft.issue=12&rft.spage=105407&rft.pages=105407-&rft.artnum=105407&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105407&rft_dat=%3Cproquest_pubme%3E2907195433%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907195433&rft_id=info:pmid/38152849&rfr_iscdi=true