Loading…
Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes
Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent...
Saved in:
Published in: | The Journal of biological chemistry 2023-12, Vol.299 (12), p.105407, Article 105407 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3 |
container_end_page | |
container_issue | 12 |
container_start_page | 105407 |
container_title | The Journal of biological chemistry |
container_volume | 299 |
creator | Wu, Heng Kren, Betsy T. Lane, Andrew N. Cassel, Teresa A. Higashi, Richard M. Fan, Teresa W.M. Scaria, George S. Shekels, Laurie L. Klein, Mark A. Albrecht, Jeffrey H. |
description | Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells. |
doi_str_mv | 10.1016/j.jbc.2023.105407 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823024353</els_id><sourcerecordid>2907195433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</originalsourceid><addsrcrecordid>eNp9kUFrHCEUx6W0NJtNPkAuxWMvs1FnXJUeStk2SSHQSwuBHMTRt1mXmXGi7qbz7WPYJKSXepGH__d78n4InVGyoIQuz7eLbWsXjLC61Lwh4h2aUSLrqub05j2aEcJopRiXR-g4pS0pp1H0IzqqJeVMNmqGbleT7fyAv1MMfzMMye-hm3CEMYa7aPqEe8imDZ1PPc4Bp904hphx60OahryB7C0eTd48mCnhAtpAqYKdMqQT9GFtugSnz_cc_bn48Xt1VV3_uvy5-nZd2YazXFnunHDQKiGZJEuhFHUEWCOZ44IKgDVYa4hrmloBASW5k85KwahiwhJTz9HXA3fctT04C0OOptNj9L2Jkw7G639fBr_Rd2GvKVkWTFnYHH1-JsRwv4OUde-Tha4zA4Rd0kwRQRVv6rpE6SFqY0gpwvp1DiX6yYre6mJFP1nRByul59PbD752vGgogS-HAJQ17T1EnayHwYLzEWzWLvj_4B8BogCgCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907195433</pqid></control><display><type>article</type><title>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Wu, Heng ; Kren, Betsy T. ; Lane, Andrew N. ; Cassel, Teresa A. ; Higashi, Richard M. ; Fan, Teresa W.M. ; Scaria, George S. ; Shekels, Laurie L. ; Klein, Mark A. ; Albrecht, Jeffrey H.</creator><creatorcontrib>Wu, Heng ; Kren, Betsy T. ; Lane, Andrew N. ; Cassel, Teresa A. ; Higashi, Richard M. ; Fan, Teresa W.M. ; Scaria, George S. ; Shekels, Laurie L. ; Klein, Mark A. ; Albrecht, Jeffrey H.</creatorcontrib><description>Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105407</identifier><identifier>PMID: 38152849</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aldolase ; anaerobic glycolysis ; Animals ; BAY 2402234 ; Biosynthetic Pathways ; cell cycle ; Cell Line ; Collection: Molecular Bases of Disease ; cyclin D1 ; Cyclin D1 - genetics ; Cyclin D1 - metabolism ; Cyclin-Dependent Kinase 4 - metabolism ; glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ; Hepatocytes - metabolism ; Humans ; liver regeneration ; Mice ; palbociclib ; pentose phosphate pathway (PPP) ; Proteomics ; purine ; pyrimidine ; Pyrimidines - biosynthesis</subject><ispartof>The Journal of biological chemistry, 2023-12, Vol.299 (12), p.105407, Article 105407</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</citedby><cites>FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</cites><orcidid>0000-0003-3457-6879 ; 0000-0003-1121-5106 ; 0000-0002-3256-0622 ; 0000-0002-7292-8938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687208/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925823024353$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38152849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kren, Betsy T.</creatorcontrib><creatorcontrib>Lane, Andrew N.</creatorcontrib><creatorcontrib>Cassel, Teresa A.</creatorcontrib><creatorcontrib>Higashi, Richard M.</creatorcontrib><creatorcontrib>Fan, Teresa W.M.</creatorcontrib><creatorcontrib>Scaria, George S.</creatorcontrib><creatorcontrib>Shekels, Laurie L.</creatorcontrib><creatorcontrib>Klein, Mark A.</creatorcontrib><creatorcontrib>Albrecht, Jeffrey H.</creatorcontrib><title>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.</description><subject>aldolase</subject><subject>anaerobic glycolysis</subject><subject>Animals</subject><subject>BAY 2402234</subject><subject>Biosynthetic Pathways</subject><subject>cell cycle</subject><subject>Cell Line</subject><subject>Collection: Molecular Bases of Disease</subject><subject>cyclin D1</subject><subject>Cyclin D1 - genetics</subject><subject>Cyclin D1 - metabolism</subject><subject>Cyclin-Dependent Kinase 4 - metabolism</subject><subject>glyceraldehyde-3-phosphate dehydrogenase (GAPDH)</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>liver regeneration</subject><subject>Mice</subject><subject>palbociclib</subject><subject>pentose phosphate pathway (PPP)</subject><subject>Proteomics</subject><subject>purine</subject><subject>pyrimidine</subject><subject>Pyrimidines - biosynthesis</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUx6W0NJtNPkAuxWMvs1FnXJUeStk2SSHQSwuBHMTRt1mXmXGi7qbz7WPYJKSXepGH__d78n4InVGyoIQuz7eLbWsXjLC61Lwh4h2aUSLrqub05j2aEcJopRiXR-g4pS0pp1H0IzqqJeVMNmqGbleT7fyAv1MMfzMMye-hm3CEMYa7aPqEe8imDZ1PPc4Bp904hphx60OahryB7C0eTd48mCnhAtpAqYKdMqQT9GFtugSnz_cc_bn48Xt1VV3_uvy5-nZd2YazXFnunHDQKiGZJEuhFHUEWCOZ44IKgDVYa4hrmloBASW5k85KwahiwhJTz9HXA3fctT04C0OOptNj9L2Jkw7G639fBr_Rd2GvKVkWTFnYHH1-JsRwv4OUde-Tha4zA4Rd0kwRQRVv6rpE6SFqY0gpwvp1DiX6yYre6mJFP1nRByul59PbD752vGgogS-HAJQ17T1EnayHwYLzEWzWLvj_4B8BogCgCQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wu, Heng</creator><creator>Kren, Betsy T.</creator><creator>Lane, Andrew N.</creator><creator>Cassel, Teresa A.</creator><creator>Higashi, Richard M.</creator><creator>Fan, Teresa W.M.</creator><creator>Scaria, George S.</creator><creator>Shekels, Laurie L.</creator><creator>Klein, Mark A.</creator><creator>Albrecht, Jeffrey H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3457-6879</orcidid><orcidid>https://orcid.org/0000-0003-1121-5106</orcidid><orcidid>https://orcid.org/0000-0002-3256-0622</orcidid><orcidid>https://orcid.org/0000-0002-7292-8938</orcidid></search><sort><creationdate>20231201</creationdate><title>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</title><author>Wu, Heng ; Kren, Betsy T. ; Lane, Andrew N. ; Cassel, Teresa A. ; Higashi, Richard M. ; Fan, Teresa W.M. ; Scaria, George S. ; Shekels, Laurie L. ; Klein, Mark A. ; Albrecht, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aldolase</topic><topic>anaerobic glycolysis</topic><topic>Animals</topic><topic>BAY 2402234</topic><topic>Biosynthetic Pathways</topic><topic>cell cycle</topic><topic>Cell Line</topic><topic>Collection: Molecular Bases of Disease</topic><topic>cyclin D1</topic><topic>Cyclin D1 - genetics</topic><topic>Cyclin D1 - metabolism</topic><topic>Cyclin-Dependent Kinase 4 - metabolism</topic><topic>glyceraldehyde-3-phosphate dehydrogenase (GAPDH)</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>liver regeneration</topic><topic>Mice</topic><topic>palbociclib</topic><topic>pentose phosphate pathway (PPP)</topic><topic>Proteomics</topic><topic>purine</topic><topic>pyrimidine</topic><topic>Pyrimidines - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kren, Betsy T.</creatorcontrib><creatorcontrib>Lane, Andrew N.</creatorcontrib><creatorcontrib>Cassel, Teresa A.</creatorcontrib><creatorcontrib>Higashi, Richard M.</creatorcontrib><creatorcontrib>Fan, Teresa W.M.</creatorcontrib><creatorcontrib>Scaria, George S.</creatorcontrib><creatorcontrib>Shekels, Laurie L.</creatorcontrib><creatorcontrib>Klein, Mark A.</creatorcontrib><creatorcontrib>Albrecht, Jeffrey H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Heng</au><au>Kren, Betsy T.</au><au>Lane, Andrew N.</au><au>Cassel, Teresa A.</au><au>Higashi, Richard M.</au><au>Fan, Teresa W.M.</au><au>Scaria, George S.</au><au>Shekels, Laurie L.</au><au>Klein, Mark A.</au><au>Albrecht, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>299</volume><issue>12</issue><spage>105407</spage><pages>105407-</pages><artnum>105407</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38152849</pmid><doi>10.1016/j.jbc.2023.105407</doi><orcidid>https://orcid.org/0000-0003-3457-6879</orcidid><orcidid>https://orcid.org/0000-0003-1121-5106</orcidid><orcidid>https://orcid.org/0000-0002-3256-0622</orcidid><orcidid>https://orcid.org/0000-0002-7292-8938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2023-12, Vol.299 (12), p.105407, Article 105407 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687208 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | aldolase anaerobic glycolysis Animals BAY 2402234 Biosynthetic Pathways cell cycle Cell Line Collection: Molecular Bases of Disease cyclin D1 Cyclin D1 - genetics Cyclin D1 - metabolism Cyclin-Dependent Kinase 4 - metabolism glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Hepatocytes - metabolism Humans liver regeneration Mice palbociclib pentose phosphate pathway (PPP) Proteomics purine pyrimidine Pyrimidines - biosynthesis |
title | Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclin%20D1%20extensively%20reprograms%20metabolism%20to%20support%20biosynthetic%20pathways%20in%20hepatocytes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wu,%20Heng&rft.date=2023-12-01&rft.volume=299&rft.issue=12&rft.spage=105407&rft.pages=105407-&rft.artnum=105407&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105407&rft_dat=%3Cproquest_pubme%3E2907195433%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-c5dd7deb97828067991d0e2482d5717eefecca0d4439e0e985d8dc8721927c0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907195433&rft_id=info:pmid/38152849&rfr_iscdi=true |