Loading…

Riding apoptotic bodies for cell-cell transmission by African swine fever virus

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We sh...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-11, Vol.120 (48), p.e2309506120-e2309506120
Main Authors: Gao, Peng, Zhou, Lei, Wu, Jiajun, Weng, Wenlian, Wang, Hua, Ye, Miaomiao, Qu, Yajin, Hao, Yuxin, Zhang, Yongning, Ge, Xinna, Guo, Xin, Han, Jun, Yang, Hanchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3
cites cdi_FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3
container_end_page e2309506120
container_issue 48
container_start_page e2309506120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Gao, Peng
Zhou, Lei
Wu, Jiajun
Weng, Wenlian
Wang, Hua
Ye, Miaomiao
Qu, Yajin
Hao, Yuxin
Zhang, Yongning
Ge, Xinna
Guo, Xin
Han, Jun
Yang, Hanchun
description African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.
doi_str_mv 10.1073/pnas.2309506120
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10691326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892269316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3</originalsourceid><addsrcrecordid>eNpdkdtLwzAYxYMobk6ffZOAL750y61t8iQyvMFgIPoc0jSdGVtSk3ay_96WzXl5-QJffjk5hwPAJUZjjHI6qZ2KY0KRSFGGCToCQ4wETjIm0DEYIkTyhDPCBuAsxiVCHcfRKRjQXHDKBB-C-YstrVtAVfu68Y3VsPClNRFWPkBtVqukH7AJysW1jdF6B4stvKuC1crB-GmdgZXZmAA3NrTxHJxUahXNxf4cgbeH-9fpUzKbPz5P72aJZoQ0Sfc3wYTmNFUlz8ucUZIKrlNd5bwsSKaM0IYRXSheKKo4pWnZL9NMKUORoSNwu9Ot22JtSm1cZ3El62DXKmylV1b-vXH2XS78RmKUCUxJ1inc7BWC_2hNbGSXrw-rnPFtlIQLQjJBcY9e_0OXvg2uy9dTKcOI5byjJjtKBx9jMNXBDUayb0v2bcmftroXV79DHPjveugXnBaRuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895410478</pqid></control><display><type>article</type><title>Riding apoptotic bodies for cell-cell transmission by African swine fever virus</title><source>PubMed Central(OpenAccess)</source><creator>Gao, Peng ; Zhou, Lei ; Wu, Jiajun ; Weng, Wenlian ; Wang, Hua ; Ye, Miaomiao ; Qu, Yajin ; Hao, Yuxin ; Zhang, Yongning ; Ge, Xinna ; Guo, Xin ; Han, Jun ; Yang, Hanchun</creator><creatorcontrib>Gao, Peng ; Zhou, Lei ; Wu, Jiajun ; Weng, Wenlian ; Wang, Hua ; Ye, Miaomiao ; Qu, Yajin ; Hao, Yuxin ; Zhang, Yongning ; Ge, Xinna ; Guo, Xin ; Han, Jun ; Yang, Hanchun</creatorcontrib><description>African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2309506120</identifier><identifier>PMID: 37983498</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>African Swine Fever ; African Swine Fever Virus - physiology ; Alveoli ; Animals ; Annexin V ; Antibodies ; Apoptosis ; Asfarviridae ; Biological Sciences ; Electron microscopy ; Extracellular Vesicles - metabolism ; Fever ; Infections ; Macrophages ; Macrophages - metabolism ; Membranes ; Monocytes ; Monocytes - metabolism ; Secondary infection ; Swine ; Virions ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (48), p.e2309506120-e2309506120</ispartof><rights>Copyright National Academy of Sciences Nov 28, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3</citedby><cites>FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3</cites><orcidid>0000-0002-0134-2761 ; 0000-0003-3359-3925 ; 0000-0002-8837-3965 ; 0000-0002-8981-4988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691326/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691326/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37983498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Weng, Wenlian</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Ye, Miaomiao</creatorcontrib><creatorcontrib>Qu, Yajin</creatorcontrib><creatorcontrib>Hao, Yuxin</creatorcontrib><creatorcontrib>Zhang, Yongning</creatorcontrib><creatorcontrib>Ge, Xinna</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Han, Jun</creatorcontrib><creatorcontrib>Yang, Hanchun</creatorcontrib><title>Riding apoptotic bodies for cell-cell transmission by African swine fever virus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.</description><subject>African Swine Fever</subject><subject>African Swine Fever Virus - physiology</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Annexin V</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Asfarviridae</subject><subject>Biological Sciences</subject><subject>Electron microscopy</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Fever</subject><subject>Infections</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Membranes</subject><subject>Monocytes</subject><subject>Monocytes - metabolism</subject><subject>Secondary infection</subject><subject>Swine</subject><subject>Virions</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkdtLwzAYxYMobk6ffZOAL750y61t8iQyvMFgIPoc0jSdGVtSk3ay_96WzXl5-QJffjk5hwPAJUZjjHI6qZ2KY0KRSFGGCToCQ4wETjIm0DEYIkTyhDPCBuAsxiVCHcfRKRjQXHDKBB-C-YstrVtAVfu68Y3VsPClNRFWPkBtVqukH7AJysW1jdF6B4stvKuC1crB-GmdgZXZmAA3NrTxHJxUahXNxf4cgbeH-9fpUzKbPz5P72aJZoQ0Sfc3wYTmNFUlz8ucUZIKrlNd5bwsSKaM0IYRXSheKKo4pWnZL9NMKUORoSNwu9Ot22JtSm1cZ3El62DXKmylV1b-vXH2XS78RmKUCUxJ1inc7BWC_2hNbGSXrw-rnPFtlIQLQjJBcY9e_0OXvg2uy9dTKcOI5byjJjtKBx9jMNXBDUayb0v2bcmftroXV79DHPjveugXnBaRuw</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Gao, Peng</creator><creator>Zhou, Lei</creator><creator>Wu, Jiajun</creator><creator>Weng, Wenlian</creator><creator>Wang, Hua</creator><creator>Ye, Miaomiao</creator><creator>Qu, Yajin</creator><creator>Hao, Yuxin</creator><creator>Zhang, Yongning</creator><creator>Ge, Xinna</creator><creator>Guo, Xin</creator><creator>Han, Jun</creator><creator>Yang, Hanchun</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0134-2761</orcidid><orcidid>https://orcid.org/0000-0003-3359-3925</orcidid><orcidid>https://orcid.org/0000-0002-8837-3965</orcidid><orcidid>https://orcid.org/0000-0002-8981-4988</orcidid></search><sort><creationdate>20231128</creationdate><title>Riding apoptotic bodies for cell-cell transmission by African swine fever virus</title><author>Gao, Peng ; Zhou, Lei ; Wu, Jiajun ; Weng, Wenlian ; Wang, Hua ; Ye, Miaomiao ; Qu, Yajin ; Hao, Yuxin ; Zhang, Yongning ; Ge, Xinna ; Guo, Xin ; Han, Jun ; Yang, Hanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>African Swine Fever</topic><topic>African Swine Fever Virus - physiology</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Annexin V</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Asfarviridae</topic><topic>Biological Sciences</topic><topic>Electron microscopy</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Fever</topic><topic>Infections</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Membranes</topic><topic>Monocytes</topic><topic>Monocytes - metabolism</topic><topic>Secondary infection</topic><topic>Swine</topic><topic>Virions</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Weng, Wenlian</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Ye, Miaomiao</creatorcontrib><creatorcontrib>Qu, Yajin</creatorcontrib><creatorcontrib>Hao, Yuxin</creatorcontrib><creatorcontrib>Zhang, Yongning</creatorcontrib><creatorcontrib>Ge, Xinna</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Han, Jun</creatorcontrib><creatorcontrib>Yang, Hanchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng</au><au>Zhou, Lei</au><au>Wu, Jiajun</au><au>Weng, Wenlian</au><au>Wang, Hua</au><au>Ye, Miaomiao</au><au>Qu, Yajin</au><au>Hao, Yuxin</au><au>Zhang, Yongning</au><au>Ge, Xinna</au><au>Guo, Xin</au><au>Han, Jun</au><au>Yang, Hanchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riding apoptotic bodies for cell-cell transmission by African swine fever virus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-11-28</date><risdate>2023</risdate><volume>120</volume><issue>48</issue><spage>e2309506120</spage><epage>e2309506120</epage><pages>e2309506120-e2309506120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37983498</pmid><doi>10.1073/pnas.2309506120</doi><orcidid>https://orcid.org/0000-0002-0134-2761</orcidid><orcidid>https://orcid.org/0000-0003-3359-3925</orcidid><orcidid>https://orcid.org/0000-0002-8837-3965</orcidid><orcidid>https://orcid.org/0000-0002-8981-4988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-11, Vol.120 (48), p.e2309506120-e2309506120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10691326
source PubMed Central(OpenAccess)
subjects African Swine Fever
African Swine Fever Virus - physiology
Alveoli
Animals
Annexin V
Antibodies
Apoptosis
Asfarviridae
Biological Sciences
Electron microscopy
Extracellular Vesicles - metabolism
Fever
Infections
Macrophages
Macrophages - metabolism
Membranes
Monocytes
Monocytes - metabolism
Secondary infection
Swine
Virions
Viruses
title Riding apoptotic bodies for cell-cell transmission by African swine fever virus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riding%20apoptotic%20bodies%20for%20cell-cell%20transmission%20by%20African%20swine%20fever%20virus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gao,%20Peng&rft.date=2023-11-28&rft.volume=120&rft.issue=48&rft.spage=e2309506120&rft.epage=e2309506120&rft.pages=e2309506120-e2309506120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2309506120&rft_dat=%3Cproquest_pubme%3E2892269316%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-4982123735ad87d7432598c5cf78db26ae9ce42cba8ba3a8335d6ae956aae30e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895410478&rft_id=info:pmid/37983498&rfr_iscdi=true