Loading…

Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes

Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American College of Cardiology 2023-11, Vol.82 (20), p.1936-1948
Main Authors: Lau, Emily S., Di Achille, Paolo, Kopparapu, Kavya, Andrews, Carl T., Singh, Pulkit, Reeder, Christopher, Al-Alusi, Mostafa, Khurshid, Shaan, Haimovich, Julian S., Ellinor, Patrick T., Picard, Michael H., Batra, Puneet, Lubitz, Steven A., Ho, Jennifer E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533
cites cdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533
container_end_page 1948
container_issue 20
container_start_page 1936
container_title Journal of the American College of Cardiology
container_volume 82
creator Lau, Emily S.
Di Achille, Paolo
Kopparapu, Kavya
Andrews, Carl T.
Singh, Pulkit
Reeder, Christopher
Al-Alusi, Mostafa
Khurshid, Shaan
Haimovich, Julian S.
Ellinor, Patrick T.
Picard, Michael H.
Batra, Puneet
Lubitz, Steven A.
Ho, Jennifer E.
description Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale. [Display omitted]
doi_str_mv 10.1016/j.jacc.2023.09.800
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10696641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109723075150</els_id><sourcerecordid>2888031746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggL9kk2En8EwkJVUNLkUZqpcLacuyb1qPEHmxnJHZ9h74hT4JHUyrY4M1d-Dvn_hyE3lJSU0L5h2291cbUDWnamvS1JOQZWlHGZNWyXjxHKyJaVlHSixP0KqUtIYRL2r9EJ63ou6KiK3T3GWCHN6Cjd_721_3DudfDBBafpQQpzeAzDmMBxowvC5XxTY6LyUsErL3FF4s32QWPryNYZ3LCax2tC3udzDLpiK-WbMIM6TV6MeopwZvHeoq-X5x_W19Wm6svX9dnm8p0jOdKDA0hjAs5gB77hrXCNsxooa01A4iyd3mCDaQroJVcCi75wDoiaMd61ran6NPRd7cMM1hTFoh6UrvoZh1_qqCd-vfHuzt1G_aKEt5z3tHi8P7RIYYfC6SsZpcMTJP2EJakGiklaanoeEGbI2piSCnC-NSHEnXISG3VISN1yEiRXpWMiujd3xM-Sf6EUoCPRwDKnfYOokrGgTflwBFMVja4__n_Bkc2pKc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888031746</pqid></control><display><type>article</type><title>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Lau, Emily S. ; Di Achille, Paolo ; Kopparapu, Kavya ; Andrews, Carl T. ; Singh, Pulkit ; Reeder, Christopher ; Al-Alusi, Mostafa ; Khurshid, Shaan ; Haimovich, Julian S. ; Ellinor, Patrick T. ; Picard, Michael H. ; Batra, Puneet ; Lubitz, Steven A. ; Ho, Jennifer E.</creator><creatorcontrib>Lau, Emily S. ; Di Achille, Paolo ; Kopparapu, Kavya ; Andrews, Carl T. ; Singh, Pulkit ; Reeder, Christopher ; Al-Alusi, Mostafa ; Khurshid, Shaan ; Haimovich, Julian S. ; Ellinor, Patrick T. ; Picard, Michael H. ; Batra, Puneet ; Lubitz, Steven A. ; Ho, Jennifer E.</creatorcontrib><description>Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve &gt;0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale. [Display omitted]</description><identifier>ISSN: 0735-1097</identifier><identifier>ISSN: 1558-3597</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2023.09.800</identifier><identifier>PMID: 37940231</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atrial Fibrillation ; cardiovascular disease ; Deep Learning ; echocardiography ; electronic health record ; Heart Failure ; Humans ; Retrospective Studies ; Stroke Volume ; Ventricular Function, Left</subject><ispartof>Journal of the American College of Cardiology, 2023-11, Vol.82 (20), p.1936-1948</ispartof><rights>2023 American College of Cardiology Foundation</rights><rights>Copyright © 2023 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</citedby><cites>FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</cites><orcidid>0000-0001-9361-6397 ; 0000-0003-4346-6241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37940231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Emily S.</creatorcontrib><creatorcontrib>Di Achille, Paolo</creatorcontrib><creatorcontrib>Kopparapu, Kavya</creatorcontrib><creatorcontrib>Andrews, Carl T.</creatorcontrib><creatorcontrib>Singh, Pulkit</creatorcontrib><creatorcontrib>Reeder, Christopher</creatorcontrib><creatorcontrib>Al-Alusi, Mostafa</creatorcontrib><creatorcontrib>Khurshid, Shaan</creatorcontrib><creatorcontrib>Haimovich, Julian S.</creatorcontrib><creatorcontrib>Ellinor, Patrick T.</creatorcontrib><creatorcontrib>Picard, Michael H.</creatorcontrib><creatorcontrib>Batra, Puneet</creatorcontrib><creatorcontrib>Lubitz, Steven A.</creatorcontrib><creatorcontrib>Ho, Jennifer E.</creatorcontrib><title>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve &gt;0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale. [Display omitted]</description><subject>Atrial Fibrillation</subject><subject>cardiovascular disease</subject><subject>Deep Learning</subject><subject>echocardiography</subject><subject>electronic health record</subject><subject>Heart Failure</subject><subject>Humans</subject><subject>Retrospective Studies</subject><subject>Stroke Volume</subject><subject>Ventricular Function, Left</subject><issn>0735-1097</issn><issn>1558-3597</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhBVggL9kk2En8EwkJVUNLkUZqpcLacuyb1qPEHmxnJHZ9h74hT4JHUyrY4M1d-Dvn_hyE3lJSU0L5h2291cbUDWnamvS1JOQZWlHGZNWyXjxHKyJaVlHSixP0KqUtIYRL2r9EJ63ou6KiK3T3GWCHN6Cjd_721_3DudfDBBafpQQpzeAzDmMBxowvC5XxTY6LyUsErL3FF4s32QWPryNYZ3LCax2tC3udzDLpiK-WbMIM6TV6MeopwZvHeoq-X5x_W19Wm6svX9dnm8p0jOdKDA0hjAs5gB77hrXCNsxooa01A4iyd3mCDaQroJVcCi75wDoiaMd61ran6NPRd7cMM1hTFoh6UrvoZh1_qqCd-vfHuzt1G_aKEt5z3tHi8P7RIYYfC6SsZpcMTJP2EJakGiklaanoeEGbI2piSCnC-NSHEnXISG3VISN1yEiRXpWMiujd3xM-Sf6EUoCPRwDKnfYOokrGgTflwBFMVja4__n_Bkc2pKc</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Lau, Emily S.</creator><creator>Di Achille, Paolo</creator><creator>Kopparapu, Kavya</creator><creator>Andrews, Carl T.</creator><creator>Singh, Pulkit</creator><creator>Reeder, Christopher</creator><creator>Al-Alusi, Mostafa</creator><creator>Khurshid, Shaan</creator><creator>Haimovich, Julian S.</creator><creator>Ellinor, Patrick T.</creator><creator>Picard, Michael H.</creator><creator>Batra, Puneet</creator><creator>Lubitz, Steven A.</creator><creator>Ho, Jennifer E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9361-6397</orcidid><orcidid>https://orcid.org/0000-0003-4346-6241</orcidid></search><sort><creationdate>20231114</creationdate><title>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</title><author>Lau, Emily S. ; Di Achille, Paolo ; Kopparapu, Kavya ; Andrews, Carl T. ; Singh, Pulkit ; Reeder, Christopher ; Al-Alusi, Mostafa ; Khurshid, Shaan ; Haimovich, Julian S. ; Ellinor, Patrick T. ; Picard, Michael H. ; Batra, Puneet ; Lubitz, Steven A. ; Ho, Jennifer E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atrial Fibrillation</topic><topic>cardiovascular disease</topic><topic>Deep Learning</topic><topic>echocardiography</topic><topic>electronic health record</topic><topic>Heart Failure</topic><topic>Humans</topic><topic>Retrospective Studies</topic><topic>Stroke Volume</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Emily S.</creatorcontrib><creatorcontrib>Di Achille, Paolo</creatorcontrib><creatorcontrib>Kopparapu, Kavya</creatorcontrib><creatorcontrib>Andrews, Carl T.</creatorcontrib><creatorcontrib>Singh, Pulkit</creatorcontrib><creatorcontrib>Reeder, Christopher</creatorcontrib><creatorcontrib>Al-Alusi, Mostafa</creatorcontrib><creatorcontrib>Khurshid, Shaan</creatorcontrib><creatorcontrib>Haimovich, Julian S.</creatorcontrib><creatorcontrib>Ellinor, Patrick T.</creatorcontrib><creatorcontrib>Picard, Michael H.</creatorcontrib><creatorcontrib>Batra, Puneet</creatorcontrib><creatorcontrib>Lubitz, Steven A.</creatorcontrib><creatorcontrib>Ho, Jennifer E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Emily S.</au><au>Di Achille, Paolo</au><au>Kopparapu, Kavya</au><au>Andrews, Carl T.</au><au>Singh, Pulkit</au><au>Reeder, Christopher</au><au>Al-Alusi, Mostafa</au><au>Khurshid, Shaan</au><au>Haimovich, Julian S.</au><au>Ellinor, Patrick T.</au><au>Picard, Michael H.</au><au>Batra, Puneet</au><au>Lubitz, Steven A.</au><au>Ho, Jennifer E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2023-11-14</date><risdate>2023</risdate><volume>82</volume><issue>20</issue><spage>1936</spage><epage>1948</epage><pages>1936-1948</pages><issn>0735-1097</issn><issn>1558-3597</issn><eissn>1558-3597</eissn><abstract>Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve &gt;0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37940231</pmid><doi>10.1016/j.jacc.2023.09.800</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9361-6397</orcidid><orcidid>https://orcid.org/0000-0003-4346-6241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2023-11, Vol.82 (20), p.1936-1948
issn 0735-1097
1558-3597
1558-3597
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10696641
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Atrial Fibrillation
cardiovascular disease
Deep Learning
echocardiography
electronic health record
Heart Failure
Humans
Retrospective Studies
Stroke Volume
Ventricular Function, Left
title Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%E2%80%93Enabled%20Assessment%20of%20Left%20Heart%20Structure%20and%20Function%20Predicts%20Cardiovascular%20Outcomes&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Lau,%20Emily%20S.&rft.date=2023-11-14&rft.volume=82&rft.issue=20&rft.spage=1936&rft.epage=1948&rft.pages=1936-1948&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2023.09.800&rft_dat=%3Cproquest_pubme%3E2888031746%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888031746&rft_id=info:pmid/37940231&rfr_iscdi=true