Loading…
Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes
Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We...
Saved in:
Published in: | Journal of the American College of Cardiology 2023-11, Vol.82 (20), p.1936-1948 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533 |
container_end_page | 1948 |
container_issue | 20 |
container_start_page | 1936 |
container_title | Journal of the American College of Cardiology |
container_volume | 82 |
creator | Lau, Emily S. Di Achille, Paolo Kopparapu, Kavya Andrews, Carl T. Singh, Pulkit Reeder, Christopher Al-Alusi, Mostafa Khurshid, Shaan Haimovich, Julian S. Ellinor, Patrick T. Picard, Michael H. Batra, Puneet Lubitz, Steven A. Ho, Jennifer E. |
description | Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function.
We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes.
We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes.
Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures.
Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
[Display omitted] |
doi_str_mv | 10.1016/j.jacc.2023.09.800 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10696641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109723075150</els_id><sourcerecordid>2888031746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggL9kk2En8EwkJVUNLkUZqpcLacuyb1qPEHmxnJHZ9h74hT4JHUyrY4M1d-Dvn_hyE3lJSU0L5h2291cbUDWnamvS1JOQZWlHGZNWyXjxHKyJaVlHSixP0KqUtIYRL2r9EJ63ou6KiK3T3GWCHN6Cjd_721_3DudfDBBafpQQpzeAzDmMBxowvC5XxTY6LyUsErL3FF4s32QWPryNYZ3LCax2tC3udzDLpiK-WbMIM6TV6MeopwZvHeoq-X5x_W19Wm6svX9dnm8p0jOdKDA0hjAs5gB77hrXCNsxooa01A4iyd3mCDaQroJVcCi75wDoiaMd61ran6NPRd7cMM1hTFoh6UrvoZh1_qqCd-vfHuzt1G_aKEt5z3tHi8P7RIYYfC6SsZpcMTJP2EJakGiklaanoeEGbI2piSCnC-NSHEnXISG3VISN1yEiRXpWMiujd3xM-Sf6EUoCPRwDKnfYOokrGgTflwBFMVja4__n_Bkc2pKc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888031746</pqid></control><display><type>article</type><title>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Lau, Emily S. ; Di Achille, Paolo ; Kopparapu, Kavya ; Andrews, Carl T. ; Singh, Pulkit ; Reeder, Christopher ; Al-Alusi, Mostafa ; Khurshid, Shaan ; Haimovich, Julian S. ; Ellinor, Patrick T. ; Picard, Michael H. ; Batra, Puneet ; Lubitz, Steven A. ; Ho, Jennifer E.</creator><creatorcontrib>Lau, Emily S. ; Di Achille, Paolo ; Kopparapu, Kavya ; Andrews, Carl T. ; Singh, Pulkit ; Reeder, Christopher ; Al-Alusi, Mostafa ; Khurshid, Shaan ; Haimovich, Julian S. ; Ellinor, Patrick T. ; Picard, Michael H. ; Batra, Puneet ; Lubitz, Steven A. ; Ho, Jennifer E.</creatorcontrib><description>Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function.
We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes.
We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes.
Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures.
Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
[Display omitted]</description><identifier>ISSN: 0735-1097</identifier><identifier>ISSN: 1558-3597</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2023.09.800</identifier><identifier>PMID: 37940231</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atrial Fibrillation ; cardiovascular disease ; Deep Learning ; echocardiography ; electronic health record ; Heart Failure ; Humans ; Retrospective Studies ; Stroke Volume ; Ventricular Function, Left</subject><ispartof>Journal of the American College of Cardiology, 2023-11, Vol.82 (20), p.1936-1948</ispartof><rights>2023 American College of Cardiology Foundation</rights><rights>Copyright © 2023 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</citedby><cites>FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</cites><orcidid>0000-0001-9361-6397 ; 0000-0003-4346-6241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37940231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Emily S.</creatorcontrib><creatorcontrib>Di Achille, Paolo</creatorcontrib><creatorcontrib>Kopparapu, Kavya</creatorcontrib><creatorcontrib>Andrews, Carl T.</creatorcontrib><creatorcontrib>Singh, Pulkit</creatorcontrib><creatorcontrib>Reeder, Christopher</creatorcontrib><creatorcontrib>Al-Alusi, Mostafa</creatorcontrib><creatorcontrib>Khurshid, Shaan</creatorcontrib><creatorcontrib>Haimovich, Julian S.</creatorcontrib><creatorcontrib>Ellinor, Patrick T.</creatorcontrib><creatorcontrib>Picard, Michael H.</creatorcontrib><creatorcontrib>Batra, Puneet</creatorcontrib><creatorcontrib>Lubitz, Steven A.</creatorcontrib><creatorcontrib>Ho, Jennifer E.</creatorcontrib><title>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function.
We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes.
We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes.
Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures.
Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
[Display omitted]</description><subject>Atrial Fibrillation</subject><subject>cardiovascular disease</subject><subject>Deep Learning</subject><subject>echocardiography</subject><subject>electronic health record</subject><subject>Heart Failure</subject><subject>Humans</subject><subject>Retrospective Studies</subject><subject>Stroke Volume</subject><subject>Ventricular Function, Left</subject><issn>0735-1097</issn><issn>1558-3597</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhBVggL9kk2En8EwkJVUNLkUZqpcLacuyb1qPEHmxnJHZ9h74hT4JHUyrY4M1d-Dvn_hyE3lJSU0L5h2291cbUDWnamvS1JOQZWlHGZNWyXjxHKyJaVlHSixP0KqUtIYRL2r9EJ63ou6KiK3T3GWCHN6Cjd_721_3DudfDBBafpQQpzeAzDmMBxowvC5XxTY6LyUsErL3FF4s32QWPryNYZ3LCax2tC3udzDLpiK-WbMIM6TV6MeopwZvHeoq-X5x_W19Wm6svX9dnm8p0jOdKDA0hjAs5gB77hrXCNsxooa01A4iyd3mCDaQroJVcCi75wDoiaMd61ran6NPRd7cMM1hTFoh6UrvoZh1_qqCd-vfHuzt1G_aKEt5z3tHi8P7RIYYfC6SsZpcMTJP2EJakGiklaanoeEGbI2piSCnC-NSHEnXISG3VISN1yEiRXpWMiujd3xM-Sf6EUoCPRwDKnfYOokrGgTflwBFMVja4__n_Bkc2pKc</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Lau, Emily S.</creator><creator>Di Achille, Paolo</creator><creator>Kopparapu, Kavya</creator><creator>Andrews, Carl T.</creator><creator>Singh, Pulkit</creator><creator>Reeder, Christopher</creator><creator>Al-Alusi, Mostafa</creator><creator>Khurshid, Shaan</creator><creator>Haimovich, Julian S.</creator><creator>Ellinor, Patrick T.</creator><creator>Picard, Michael H.</creator><creator>Batra, Puneet</creator><creator>Lubitz, Steven A.</creator><creator>Ho, Jennifer E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9361-6397</orcidid><orcidid>https://orcid.org/0000-0003-4346-6241</orcidid></search><sort><creationdate>20231114</creationdate><title>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</title><author>Lau, Emily S. ; Di Achille, Paolo ; Kopparapu, Kavya ; Andrews, Carl T. ; Singh, Pulkit ; Reeder, Christopher ; Al-Alusi, Mostafa ; Khurshid, Shaan ; Haimovich, Julian S. ; Ellinor, Patrick T. ; Picard, Michael H. ; Batra, Puneet ; Lubitz, Steven A. ; Ho, Jennifer E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atrial Fibrillation</topic><topic>cardiovascular disease</topic><topic>Deep Learning</topic><topic>echocardiography</topic><topic>electronic health record</topic><topic>Heart Failure</topic><topic>Humans</topic><topic>Retrospective Studies</topic><topic>Stroke Volume</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Emily S.</creatorcontrib><creatorcontrib>Di Achille, Paolo</creatorcontrib><creatorcontrib>Kopparapu, Kavya</creatorcontrib><creatorcontrib>Andrews, Carl T.</creatorcontrib><creatorcontrib>Singh, Pulkit</creatorcontrib><creatorcontrib>Reeder, Christopher</creatorcontrib><creatorcontrib>Al-Alusi, Mostafa</creatorcontrib><creatorcontrib>Khurshid, Shaan</creatorcontrib><creatorcontrib>Haimovich, Julian S.</creatorcontrib><creatorcontrib>Ellinor, Patrick T.</creatorcontrib><creatorcontrib>Picard, Michael H.</creatorcontrib><creatorcontrib>Batra, Puneet</creatorcontrib><creatorcontrib>Lubitz, Steven A.</creatorcontrib><creatorcontrib>Ho, Jennifer E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Emily S.</au><au>Di Achille, Paolo</au><au>Kopparapu, Kavya</au><au>Andrews, Carl T.</au><au>Singh, Pulkit</au><au>Reeder, Christopher</au><au>Al-Alusi, Mostafa</au><au>Khurshid, Shaan</au><au>Haimovich, Julian S.</au><au>Ellinor, Patrick T.</au><au>Picard, Michael H.</au><au>Batra, Puneet</au><au>Lubitz, Steven A.</au><au>Ho, Jennifer E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2023-11-14</date><risdate>2023</risdate><volume>82</volume><issue>20</issue><spage>1936</spage><epage>1948</epage><pages>1936-1948</pages><issn>0735-1097</issn><issn>1558-3597</issn><eissn>1558-3597</eissn><abstract>Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function.
We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes.
We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes.
Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures.
Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37940231</pmid><doi>10.1016/j.jacc.2023.09.800</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9361-6397</orcidid><orcidid>https://orcid.org/0000-0003-4346-6241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1097 |
ispartof | Journal of the American College of Cardiology, 2023-11, Vol.82 (20), p.1936-1948 |
issn | 0735-1097 1558-3597 1558-3597 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10696641 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Atrial Fibrillation cardiovascular disease Deep Learning echocardiography electronic health record Heart Failure Humans Retrospective Studies Stroke Volume Ventricular Function, Left |
title | Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%E2%80%93Enabled%20Assessment%20of%20Left%20Heart%20Structure%20and%20Function%20Predicts%20Cardiovascular%20Outcomes&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Lau,%20Emily%20S.&rft.date=2023-11-14&rft.volume=82&rft.issue=20&rft.spage=1936&rft.epage=1948&rft.pages=1936-1948&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2023.09.800&rft_dat=%3Cproquest_pubme%3E2888031746%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-7b2005678beaf92537d25ca7addcbe710111175b04b20d8687686b54071459533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888031746&rft_id=info:pmid/37940231&rfr_iscdi=true |