Loading…

WFA-GPU: gap-affine pairwise read-alignment using GPUs

Abstract Motivation Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirement...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2023-12, Vol.39 (12)
Main Authors: Aguado-Puig, Quim, Doblas, Max, Matzoros, Christos, Espinosa, Antonio, Moure, Juan Carlos, Marco-Sola, Santiago, Moreto, Miquel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3
cites cdi_FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3
container_end_page
container_issue 12
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 39
creator Aguado-Puig, Quim
Doblas, Max
Matzoros, Christos
Espinosa, Antonio
Moure, Juan Carlos
Marco-Sola, Santiago
Moreto, Miquel
description Abstract Motivation Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing resources available on modern accelerator-based architectures. Results This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU–GPU co-design capable of performing inter-sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation. As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4.3× and up to 18.2× when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to 29× faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU is the only GPU solution capable of correctly aligning long reads using a commodity GPU. Availability and implementation WFA-GPU code and documentation are publicly available at https://github.com/quim0/WFA-GPU.
doi_str_mv 10.1093/bioinformatics/btad701
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10697739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btad701</oup_id><sourcerecordid>2891755099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhS0EoqXwF6qMLKF2nNgOC6oqWpAqwUDFaF0SOxglcbATEP-eVC1V2bjlTrrv3j09hKYE3xCc0llmrGm0dTV0JvezrIOCY3KCxoQyHsaCkNOjeYQuvH_HGCc4YedoRHnKE8HFGLHX5TxcPW9ugxLaELQ2jQpaMO7LeBU4BUUIlSmbWjVd0HvTlMFA-0t0pqHy6mrfJ2izvH9ZPITrp9XjYr4O8zjhXUi12hbDKhWaMKCQigxiVhQizxjGhNOEFopHLIOI4By4FkorEasoKzjN6QTd7XTbPqtVkQ8uHFSydaYG9y0tGPl305g3WdpPSTBLOafpoHC9V3D2o1e-k7XxuaoqaJTtvYxESniS4HSLsh2aO-u9U_rwh2C5TV3-TV3uUx8Op8cuD2e_MQ8A2QG2b_8r-gMclpZ-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891755099</pqid></control><display><type>article</type><title>WFA-GPU: gap-affine pairwise read-alignment using GPUs</title><source>PubMed Central Free</source><source>Open Access: Oxford University Press Open Journals</source><creator>Aguado-Puig, Quim ; Doblas, Max ; Matzoros, Christos ; Espinosa, Antonio ; Moure, Juan Carlos ; Marco-Sola, Santiago ; Moreto, Miquel</creator><contributor>Kelso, Janet</contributor><creatorcontrib>Aguado-Puig, Quim ; Doblas, Max ; Matzoros, Christos ; Espinosa, Antonio ; Moure, Juan Carlos ; Marco-Sola, Santiago ; Moreto, Miquel ; Kelso, Janet</creatorcontrib><description>Abstract Motivation Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing resources available on modern accelerator-based architectures. Results This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU–GPU co-design capable of performing inter-sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation. As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4.3× and up to 18.2× when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to 29× faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU is the only GPU solution capable of correctly aligning long reads using a commodity GPU. Availability and implementation WFA-GPU code and documentation are publicly available at https://github.com/quim0/WFA-GPU.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad701</identifier><identifier>PMID: 37975878</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computing Methodologies ; Genomics ; Original Paper ; Sequence Analysis ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2023-12, Vol.39 (12)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3</citedby><cites>FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3</cites><orcidid>0000-0003-4871-3192 ; 0000-0001-7951-3914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697739/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697739/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37975878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kelso, Janet</contributor><creatorcontrib>Aguado-Puig, Quim</creatorcontrib><creatorcontrib>Doblas, Max</creatorcontrib><creatorcontrib>Matzoros, Christos</creatorcontrib><creatorcontrib>Espinosa, Antonio</creatorcontrib><creatorcontrib>Moure, Juan Carlos</creatorcontrib><creatorcontrib>Marco-Sola, Santiago</creatorcontrib><creatorcontrib>Moreto, Miquel</creatorcontrib><title>WFA-GPU: gap-affine pairwise read-alignment using GPUs</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing resources available on modern accelerator-based architectures. Results This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU–GPU co-design capable of performing inter-sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation. As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4.3× and up to 18.2× when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to 29× faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU is the only GPU solution capable of correctly aligning long reads using a commodity GPU. Availability and implementation WFA-GPU code and documentation are publicly available at https://github.com/quim0/WFA-GPU.</description><subject>Algorithms</subject><subject>Computing Methodologies</subject><subject>Genomics</subject><subject>Original Paper</subject><subject>Sequence Analysis</subject><subject>Software</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkDFPwzAQhS0EoqXwF6qMLKF2nNgOC6oqWpAqwUDFaF0SOxglcbATEP-eVC1V2bjlTrrv3j09hKYE3xCc0llmrGm0dTV0JvezrIOCY3KCxoQyHsaCkNOjeYQuvH_HGCc4YedoRHnKE8HFGLHX5TxcPW9ugxLaELQ2jQpaMO7LeBU4BUUIlSmbWjVd0HvTlMFA-0t0pqHy6mrfJ2izvH9ZPITrp9XjYr4O8zjhXUi12hbDKhWaMKCQigxiVhQizxjGhNOEFopHLIOI4By4FkorEasoKzjN6QTd7XTbPqtVkQ8uHFSydaYG9y0tGPl305g3WdpPSTBLOafpoHC9V3D2o1e-k7XxuaoqaJTtvYxESniS4HSLsh2aO-u9U_rwh2C5TV3-TV3uUx8Op8cuD2e_MQ8A2QG2b_8r-gMclpZ-</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Aguado-Puig, Quim</creator><creator>Doblas, Max</creator><creator>Matzoros, Christos</creator><creator>Espinosa, Antonio</creator><creator>Moure, Juan Carlos</creator><creator>Marco-Sola, Santiago</creator><creator>Moreto, Miquel</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4871-3192</orcidid><orcidid>https://orcid.org/0000-0001-7951-3914</orcidid></search><sort><creationdate>20231201</creationdate><title>WFA-GPU: gap-affine pairwise read-alignment using GPUs</title><author>Aguado-Puig, Quim ; Doblas, Max ; Matzoros, Christos ; Espinosa, Antonio ; Moure, Juan Carlos ; Marco-Sola, Santiago ; Moreto, Miquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computing Methodologies</topic><topic>Genomics</topic><topic>Original Paper</topic><topic>Sequence Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguado-Puig, Quim</creatorcontrib><creatorcontrib>Doblas, Max</creatorcontrib><creatorcontrib>Matzoros, Christos</creatorcontrib><creatorcontrib>Espinosa, Antonio</creatorcontrib><creatorcontrib>Moure, Juan Carlos</creatorcontrib><creatorcontrib>Marco-Sola, Santiago</creatorcontrib><creatorcontrib>Moreto, Miquel</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguado-Puig, Quim</au><au>Doblas, Max</au><au>Matzoros, Christos</au><au>Espinosa, Antonio</au><au>Moure, Juan Carlos</au><au>Marco-Sola, Santiago</au><au>Moreto, Miquel</au><au>Kelso, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WFA-GPU: gap-affine pairwise read-alignment using GPUs</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>39</volume><issue>12</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing resources available on modern accelerator-based architectures. Results This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU–GPU co-design capable of performing inter-sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation. As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4.3× and up to 18.2× when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to 29× faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU is the only GPU solution capable of correctly aligning long reads using a commodity GPU. Availability and implementation WFA-GPU code and documentation are publicly available at https://github.com/quim0/WFA-GPU.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37975878</pmid><doi>10.1093/bioinformatics/btad701</doi><orcidid>https://orcid.org/0000-0003-4871-3192</orcidid><orcidid>https://orcid.org/0000-0001-7951-3914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2023-12, Vol.39 (12)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10697739
source PubMed Central Free; Open Access: Oxford University Press Open Journals
subjects Algorithms
Computing Methodologies
Genomics
Original Paper
Sequence Analysis
Software
title WFA-GPU: gap-affine pairwise read-alignment using GPUs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WFA-GPU:%20gap-affine%20pairwise%20read-alignment%20using%20GPUs&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Aguado-Puig,%20Quim&rft.date=2023-12-01&rft.volume=39&rft.issue=12&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad701&rft_dat=%3Cproquest_pubme%3E2891755099%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-3feeeee60e98f16a3a98ba46dd8cb60017353de726ba210ca7f8efe84e2bd73c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2891755099&rft_id=info:pmid/37975878&rft_oup_id=10.1093/bioinformatics/btad701&rfr_iscdi=true