Loading…

Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony

Microbial oxidation of environmental antimonite (Sb­(III)) to antimonate (Sb­(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb­(III) to Sb­(V) under oxic conditions by an unknown mechanism. Genomic analysis of...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2023-10, Vol.57 (39), p.14579-14588
Main Authors: Tang, Shi-Tong, Song, Xin-Wei, Chen, Jian, Shen, Jie, Ma, Bin, Rosen, Barry P., Zhang, Jun, Zhao, Fang-Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3
cites cdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3
container_end_page 14588
container_issue 39
container_start_page 14579
container_title Environmental science & technology
container_volume 57
creator Tang, Shi-Tong
Song, Xin-Wei
Chen, Jian
Shen, Jie
Ma, Bin
Rosen, Barry P.
Zhang, Jun
Zhao, Fang-Jie
description Microbial oxidation of environmental antimonite (Sb­(III)) to antimonate (Sb­(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb­(III) to Sb­(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb­(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb­(III) but not arsenite (As­(III)) or methylarsenite (MAs­(III)). Purified ArsO catalyzes Sb­(III) oxidation to Sb­(V) with NADPH or NADH as the electron donor but does not oxidize As­(III) or MAs­(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb­(III) oxidase that plays a significant role in the detoxification of Sb­(III).
doi_str_mv 10.1021/acs.est.3c03458
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10699511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875535402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</originalsourceid><addsrcrecordid>eNp1kcFrFDEUxoModrt69iYBL4LMNi-ZzGROUte2CoWCKHoL2cyLTZlJtslMof-9WXZdVPCUw_t9X973PkJeAVsB43BmbF5hnlbCMlFL9YQsQHJWSSXhKVkwBqLqRPPjhJzmfMcY44Kp5-REtK1oAdSC6O--x7xNaHr60ecp-c08-RhodHS6RWpSvqFXGJCuY3CYMv1g7ITJm4F-wVwUJlikU6QX4cGnGEYMU5mdh8mPMTy-IM-cGTK-PLxL8u3y4uv6U3V9c_V5fX5dmRraqeJdyxtulMOSqpa8cUyhdfVGuM41TPVccWwAZccAemBStugs9kzZ3lljxJK83_tu582IvS1bJDPobfKjSY86Gq__ngR_q3_GBw2s6ToJUBzeHhxSvJ_LUfXos8VhMAHjnDVXjQIueFMX9M0_6F2cUyj5CtVKKWRdLr0kZ3vKpphzQnfcBpjetadLe3qnPrRXFK__DHHkf9dVgHd7YKc8_vk_u18VB6b1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875535402</pqid></control><display><type>article</type><title>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Shi-Tong ; Song, Xin-Wei ; Chen, Jian ; Shen, Jie ; Ma, Bin ; Rosen, Barry P. ; Zhang, Jun ; Zhao, Fang-Jie</creator><creatorcontrib>Tang, Shi-Tong ; Song, Xin-Wei ; Chen, Jian ; Shen, Jie ; Ma, Bin ; Rosen, Barry P. ; Zhang, Jun ; Zhao, Fang-Jie</creatorcontrib><description>Microbial oxidation of environmental antimonite (Sb­(III)) to antimonate (Sb­(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb­(III) to Sb­(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb­(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb­(III) but not arsenite (As­(III)) or methylarsenite (MAs­(III)). Purified ArsO catalyzes Sb­(III) oxidation to Sb­(V) with NADPH or NADH as the electron donor but does not oxidize As­(III) or MAs­(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb­(III) oxidase that plays a significant role in the detoxification of Sb­(III).</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c03458</identifier><identifier>PMID: 37737118</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenine ; Antimony ; Antimony - chemistry ; Antimony - metabolism ; Arsenic ; Arsenite ; Biogeochemical Cycling ; Detoxification ; E coli ; Enzymatic activity ; Escherichia coli - metabolism ; Flavin ; Flavin-adenine dinucleotide ; Flavin-Adenine Dinucleotide - metabolism ; Genomic analysis ; Humans ; Interleukin-1 Receptor-Like 1 Protein - metabolism ; Microorganisms ; Nicotinamide adenine dinucleotide ; Oxidation ; Oxidation resistance ; Oxidation-Reduction ; Oxidoreductases - metabolism ; Soil contamination ; Soil pollution ; Stibnite</subject><ispartof>Environmental science &amp; technology, 2023-10, Vol.57 (39), p.14579-14588</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 3, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</citedby><cites>FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</cites><orcidid>0000-0003-1965-7224 ; 0000-0002-5230-4271 ; 0000-0002-0164-169X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37737118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Shi-Tong</creatorcontrib><creatorcontrib>Song, Xin-Wei</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Rosen, Barry P.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhao, Fang-Jie</creatorcontrib><title>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial oxidation of environmental antimonite (Sb­(III)) to antimonate (Sb­(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb­(III) to Sb­(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb­(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb­(III) but not arsenite (As­(III)) or methylarsenite (MAs­(III)). Purified ArsO catalyzes Sb­(III) oxidation to Sb­(V) with NADPH or NADH as the electron donor but does not oxidize As­(III) or MAs­(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb­(III) oxidase that plays a significant role in the detoxification of Sb­(III).</description><subject>Adenine</subject><subject>Antimony</subject><subject>Antimony - chemistry</subject><subject>Antimony - metabolism</subject><subject>Arsenic</subject><subject>Arsenite</subject><subject>Biogeochemical Cycling</subject><subject>Detoxification</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Escherichia coli - metabolism</subject><subject>Flavin</subject><subject>Flavin-adenine dinucleotide</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>Genomic analysis</subject><subject>Humans</subject><subject>Interleukin-1 Receptor-Like 1 Protein - metabolism</subject><subject>Microorganisms</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - metabolism</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Stibnite</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kcFrFDEUxoModrt69iYBL4LMNi-ZzGROUte2CoWCKHoL2cyLTZlJtslMof-9WXZdVPCUw_t9X973PkJeAVsB43BmbF5hnlbCMlFL9YQsQHJWSSXhKVkwBqLqRPPjhJzmfMcY44Kp5-REtK1oAdSC6O--x7xNaHr60ecp-c08-RhodHS6RWpSvqFXGJCuY3CYMv1g7ITJm4F-wVwUJlikU6QX4cGnGEYMU5mdh8mPMTy-IM-cGTK-PLxL8u3y4uv6U3V9c_V5fX5dmRraqeJdyxtulMOSqpa8cUyhdfVGuM41TPVccWwAZccAemBStugs9kzZ3lljxJK83_tu582IvS1bJDPobfKjSY86Gq__ngR_q3_GBw2s6ToJUBzeHhxSvJ_LUfXos8VhMAHjnDVXjQIueFMX9M0_6F2cUyj5CtVKKWRdLr0kZ3vKpphzQnfcBpjetadLe3qnPrRXFK__DHHkf9dVgHd7YKc8_vk_u18VB6b1</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Tang, Shi-Tong</creator><creator>Song, Xin-Wei</creator><creator>Chen, Jian</creator><creator>Shen, Jie</creator><creator>Ma, Bin</creator><creator>Rosen, Barry P.</creator><creator>Zhang, Jun</creator><creator>Zhao, Fang-Jie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1965-7224</orcidid><orcidid>https://orcid.org/0000-0002-5230-4271</orcidid><orcidid>https://orcid.org/0000-0002-0164-169X</orcidid></search><sort><creationdate>20231003</creationdate><title>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</title><author>Tang, Shi-Tong ; Song, Xin-Wei ; Chen, Jian ; Shen, Jie ; Ma, Bin ; Rosen, Barry P. ; Zhang, Jun ; Zhao, Fang-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenine</topic><topic>Antimony</topic><topic>Antimony - chemistry</topic><topic>Antimony - metabolism</topic><topic>Arsenic</topic><topic>Arsenite</topic><topic>Biogeochemical Cycling</topic><topic>Detoxification</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Escherichia coli - metabolism</topic><topic>Flavin</topic><topic>Flavin-adenine dinucleotide</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>Genomic analysis</topic><topic>Humans</topic><topic>Interleukin-1 Receptor-Like 1 Protein - metabolism</topic><topic>Microorganisms</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - metabolism</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Stibnite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shi-Tong</creatorcontrib><creatorcontrib>Song, Xin-Wei</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Rosen, Barry P.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhao, Fang-Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Shi-Tong</au><au>Song, Xin-Wei</au><au>Chen, Jian</au><au>Shen, Jie</au><au>Ma, Bin</au><au>Rosen, Barry P.</au><au>Zhang, Jun</au><au>Zhao, Fang-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>57</volume><issue>39</issue><spage>14579</spage><epage>14588</epage><pages>14579-14588</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Microbial oxidation of environmental antimonite (Sb­(III)) to antimonate (Sb­(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb­(III) to Sb­(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb­(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb­(III) but not arsenite (As­(III)) or methylarsenite (MAs­(III)). Purified ArsO catalyzes Sb­(III) oxidation to Sb­(V) with NADPH or NADH as the electron donor but does not oxidize As­(III) or MAs­(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb­(III) oxidase that plays a significant role in the detoxification of Sb­(III).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37737118</pmid><doi>10.1021/acs.est.3c03458</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1965-7224</orcidid><orcidid>https://orcid.org/0000-0002-5230-4271</orcidid><orcidid>https://orcid.org/0000-0002-0164-169X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-10, Vol.57 (39), p.14579-14588
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10699511
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adenine
Antimony
Antimony - chemistry
Antimony - metabolism
Arsenic
Arsenite
Biogeochemical Cycling
Detoxification
E coli
Enzymatic activity
Escherichia coli - metabolism
Flavin
Flavin-adenine dinucleotide
Flavin-Adenine Dinucleotide - metabolism
Genomic analysis
Humans
Interleukin-1 Receptor-Like 1 Protein - metabolism
Microorganisms
Nicotinamide adenine dinucleotide
Oxidation
Oxidation resistance
Oxidation-Reduction
Oxidoreductases - metabolism
Soil contamination
Soil pollution
Stibnite
title Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widespread%20Distribution%20of%20the%20arsO%20Gene%20Confers%20Bacterial%20Resistance%20to%20Environmental%20Antimony&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tang,%20Shi-Tong&rft.date=2023-10-03&rft.volume=57&rft.issue=39&rft.spage=14579&rft.epage=14588&rft.pages=14579-14588&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c03458&rft_dat=%3Cproquest_pubme%3E2875535402%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875535402&rft_id=info:pmid/37737118&rfr_iscdi=true