Loading…
Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony
Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of...
Saved in:
Published in: | Environmental science & technology 2023-10, Vol.57 (39), p.14579-14588 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3 |
---|---|
cites | cdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3 |
container_end_page | 14588 |
container_issue | 39 |
container_start_page | 14579 |
container_title | Environmental science & technology |
container_volume | 57 |
creator | Tang, Shi-Tong Song, Xin-Wei Chen, Jian Shen, Jie Ma, Bin Rosen, Barry P. Zhang, Jun Zhao, Fang-Jie |
description | Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb(III) but not arsenite (As(III)) or methylarsenite (MAs(III)). Purified ArsO catalyzes Sb(III) oxidation to Sb(V) with NADPH or NADH as the electron donor but does not oxidize As(III) or MAs(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb(III) oxidase that plays a significant role in the detoxification of Sb(III). |
doi_str_mv | 10.1021/acs.est.3c03458 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10699511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875535402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</originalsourceid><addsrcrecordid>eNp1kcFrFDEUxoModrt69iYBL4LMNi-ZzGROUte2CoWCKHoL2cyLTZlJtslMof-9WXZdVPCUw_t9X973PkJeAVsB43BmbF5hnlbCMlFL9YQsQHJWSSXhKVkwBqLqRPPjhJzmfMcY44Kp5-REtK1oAdSC6O--x7xNaHr60ecp-c08-RhodHS6RWpSvqFXGJCuY3CYMv1g7ITJm4F-wVwUJlikU6QX4cGnGEYMU5mdh8mPMTy-IM-cGTK-PLxL8u3y4uv6U3V9c_V5fX5dmRraqeJdyxtulMOSqpa8cUyhdfVGuM41TPVccWwAZccAemBStugs9kzZ3lljxJK83_tu582IvS1bJDPobfKjSY86Gq__ngR_q3_GBw2s6ToJUBzeHhxSvJ_LUfXos8VhMAHjnDVXjQIueFMX9M0_6F2cUyj5CtVKKWRdLr0kZ3vKpphzQnfcBpjetadLe3qnPrRXFK__DHHkf9dVgHd7YKc8_vk_u18VB6b1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875535402</pqid></control><display><type>article</type><title>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Shi-Tong ; Song, Xin-Wei ; Chen, Jian ; Shen, Jie ; Ma, Bin ; Rosen, Barry P. ; Zhang, Jun ; Zhao, Fang-Jie</creator><creatorcontrib>Tang, Shi-Tong ; Song, Xin-Wei ; Chen, Jian ; Shen, Jie ; Ma, Bin ; Rosen, Barry P. ; Zhang, Jun ; Zhao, Fang-Jie</creatorcontrib><description>Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb(III) but not arsenite (As(III)) or methylarsenite (MAs(III)). Purified ArsO catalyzes Sb(III) oxidation to Sb(V) with NADPH or NADH as the electron donor but does not oxidize As(III) or MAs(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb(III) oxidase that plays a significant role in the detoxification of Sb(III).</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c03458</identifier><identifier>PMID: 37737118</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenine ; Antimony ; Antimony - chemistry ; Antimony - metabolism ; Arsenic ; Arsenite ; Biogeochemical Cycling ; Detoxification ; E coli ; Enzymatic activity ; Escherichia coli - metabolism ; Flavin ; Flavin-adenine dinucleotide ; Flavin-Adenine Dinucleotide - metabolism ; Genomic analysis ; Humans ; Interleukin-1 Receptor-Like 1 Protein - metabolism ; Microorganisms ; Nicotinamide adenine dinucleotide ; Oxidation ; Oxidation resistance ; Oxidation-Reduction ; Oxidoreductases - metabolism ; Soil contamination ; Soil pollution ; Stibnite</subject><ispartof>Environmental science & technology, 2023-10, Vol.57 (39), p.14579-14588</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 3, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</citedby><cites>FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</cites><orcidid>0000-0003-1965-7224 ; 0000-0002-5230-4271 ; 0000-0002-0164-169X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37737118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Shi-Tong</creatorcontrib><creatorcontrib>Song, Xin-Wei</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Rosen, Barry P.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhao, Fang-Jie</creatorcontrib><title>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb(III) but not arsenite (As(III)) or methylarsenite (MAs(III)). Purified ArsO catalyzes Sb(III) oxidation to Sb(V) with NADPH or NADH as the electron donor but does not oxidize As(III) or MAs(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb(III) oxidase that plays a significant role in the detoxification of Sb(III).</description><subject>Adenine</subject><subject>Antimony</subject><subject>Antimony - chemistry</subject><subject>Antimony - metabolism</subject><subject>Arsenic</subject><subject>Arsenite</subject><subject>Biogeochemical Cycling</subject><subject>Detoxification</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Escherichia coli - metabolism</subject><subject>Flavin</subject><subject>Flavin-adenine dinucleotide</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>Genomic analysis</subject><subject>Humans</subject><subject>Interleukin-1 Receptor-Like 1 Protein - metabolism</subject><subject>Microorganisms</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - metabolism</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Stibnite</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kcFrFDEUxoModrt69iYBL4LMNi-ZzGROUte2CoWCKHoL2cyLTZlJtslMof-9WXZdVPCUw_t9X973PkJeAVsB43BmbF5hnlbCMlFL9YQsQHJWSSXhKVkwBqLqRPPjhJzmfMcY44Kp5-REtK1oAdSC6O--x7xNaHr60ecp-c08-RhodHS6RWpSvqFXGJCuY3CYMv1g7ITJm4F-wVwUJlikU6QX4cGnGEYMU5mdh8mPMTy-IM-cGTK-PLxL8u3y4uv6U3V9c_V5fX5dmRraqeJdyxtulMOSqpa8cUyhdfVGuM41TPVccWwAZccAemBStugs9kzZ3lljxJK83_tu582IvS1bJDPobfKjSY86Gq__ngR_q3_GBw2s6ToJUBzeHhxSvJ_LUfXos8VhMAHjnDVXjQIueFMX9M0_6F2cUyj5CtVKKWRdLr0kZ3vKpphzQnfcBpjetadLe3qnPrRXFK__DHHkf9dVgHd7YKc8_vk_u18VB6b1</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Tang, Shi-Tong</creator><creator>Song, Xin-Wei</creator><creator>Chen, Jian</creator><creator>Shen, Jie</creator><creator>Ma, Bin</creator><creator>Rosen, Barry P.</creator><creator>Zhang, Jun</creator><creator>Zhao, Fang-Jie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1965-7224</orcidid><orcidid>https://orcid.org/0000-0002-5230-4271</orcidid><orcidid>https://orcid.org/0000-0002-0164-169X</orcidid></search><sort><creationdate>20231003</creationdate><title>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</title><author>Tang, Shi-Tong ; Song, Xin-Wei ; Chen, Jian ; Shen, Jie ; Ma, Bin ; Rosen, Barry P. ; Zhang, Jun ; Zhao, Fang-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenine</topic><topic>Antimony</topic><topic>Antimony - chemistry</topic><topic>Antimony - metabolism</topic><topic>Arsenic</topic><topic>Arsenite</topic><topic>Biogeochemical Cycling</topic><topic>Detoxification</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Escherichia coli - metabolism</topic><topic>Flavin</topic><topic>Flavin-adenine dinucleotide</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>Genomic analysis</topic><topic>Humans</topic><topic>Interleukin-1 Receptor-Like 1 Protein - metabolism</topic><topic>Microorganisms</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - metabolism</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Stibnite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shi-Tong</creatorcontrib><creatorcontrib>Song, Xin-Wei</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Rosen, Barry P.</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhao, Fang-Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Shi-Tong</au><au>Song, Xin-Wei</au><au>Chen, Jian</au><au>Shen, Jie</au><au>Ma, Bin</au><au>Rosen, Barry P.</au><au>Zhang, Jun</au><au>Zhao, Fang-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>57</volume><issue>39</issue><spage>14579</spage><epage>14588</epage><pages>14579-14588</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb(III) but not arsenite (As(III)) or methylarsenite (MAs(III)). Purified ArsO catalyzes Sb(III) oxidation to Sb(V) with NADPH or NADH as the electron donor but does not oxidize As(III) or MAs(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb(III) oxidase that plays a significant role in the detoxification of Sb(III).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37737118</pmid><doi>10.1021/acs.est.3c03458</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1965-7224</orcidid><orcidid>https://orcid.org/0000-0002-5230-4271</orcidid><orcidid>https://orcid.org/0000-0002-0164-169X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2023-10, Vol.57 (39), p.14579-14588 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10699511 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adenine Antimony Antimony - chemistry Antimony - metabolism Arsenic Arsenite Biogeochemical Cycling Detoxification E coli Enzymatic activity Escherichia coli - metabolism Flavin Flavin-adenine dinucleotide Flavin-Adenine Dinucleotide - metabolism Genomic analysis Humans Interleukin-1 Receptor-Like 1 Protein - metabolism Microorganisms Nicotinamide adenine dinucleotide Oxidation Oxidation resistance Oxidation-Reduction Oxidoreductases - metabolism Soil contamination Soil pollution Stibnite |
title | Widespread Distribution of the arsO Gene Confers Bacterial Resistance to Environmental Antimony |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widespread%20Distribution%20of%20the%20arsO%20Gene%20Confers%20Bacterial%20Resistance%20to%20Environmental%20Antimony&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tang,%20Shi-Tong&rft.date=2023-10-03&rft.volume=57&rft.issue=39&rft.spage=14579&rft.epage=14588&rft.pages=14579-14588&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c03458&rft_dat=%3Cproquest_pubme%3E2875535402%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-297262a8fe0214526f08ecf4b3f9f608d282e61e59011d10557efced08cdfcaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875535402&rft_id=info:pmid/37737118&rfr_iscdi=true |