Loading…
Structural and thermodynamic framework for PIEZO1 modulation by small molecules
Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screenin...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2023-12, Vol.120 (50), p.e2310933120 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543 |
container_end_page | |
container_issue | 50 |
container_start_page | e2310933120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Jiang, Wenjuan Wijerathne, Tharaka D Zhang, Han Lin, Yi-Chun Jo, Sunhwan Im, Wonpil Lacroix, Jerome J Luo, Yun L |
description | Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems. |
doi_str_mv | 10.1073/pnas.2310933120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10723123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902946682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</originalsourceid><addsrcrecordid>eNpdkUtP3DAUhS3UqgxD1-yqSN10k-H6kTheVWg0wEgjDRKwYWPdeJwS6sSDnVDNv8cDlD5WftzPx_fcQ8gJhRkFyU-3PcYZ4xQU55TBAZmkLc1LoeADmQAwmVeCiUNyFOMDAKiigk_kkFdQQlGWE7K-HsJohjGgy7DfZMO9DZ3f7HrsWpM1ATv7y4efWeNDdrVc3K1plsqjw6H1fVbvstihc-nOWTM6G4_JxwZdtJ_f1im5PV_czC_z1fpiOT9b5UYwNuSGG6F4w6XhCLWoyrJSIKViNp0AKtogY8AblHVVY1NsEEEWKK0S1MpC8Cn5_qq7HevObozth2RBb0PbYdhpj63-t9K39_qHf9JpbGlejCeFb28KwT-ONg66a6OxzmFv_Rg1U8CUSI2xhH79D33wY-iTvxcKmGAVJOr0lTLBxxhs894Nhf23XO_T0n_SSi--_G3inf8dD38G4cqQzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902024280</pqid></control><display><type>article</type><title>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</title><source>Open Access: PubMed Central</source><creator>Jiang, Wenjuan ; Wijerathne, Tharaka D ; Zhang, Han ; Lin, Yi-Chun ; Jo, Sunhwan ; Im, Wonpil ; Lacroix, Jerome J ; Luo, Yun L</creator><creatorcontrib>Jiang, Wenjuan ; Wijerathne, Tharaka D ; Zhang, Han ; Lin, Yi-Chun ; Jo, Sunhwan ; Im, Wonpil ; Lacroix, Jerome J ; Luo, Yun L</creatorcontrib><description>Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2310933120</identifier><identifier>PMID: 38060566</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding energy ; Binding sites ; Biological Sciences ; Channels ; Crosslinking ; Free energy ; High-throughput screening ; Membrane proteins ; Membranes ; Modulators ; Molecular dynamics ; Pharmacology ; Physical Sciences ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (50), p.e2310933120</ispartof><rights>Copyright National Academy of Sciences Dec 12, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</citedby><cites>FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</cites><orcidid>0000-0001-5687-0652 ; 0000-0001-5642-6041 ; 0000-0003-3581-754X ; 0000-0002-6900-3272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38060566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Wijerathne, Tharaka D</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Jo, Sunhwan</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Lacroix, Jerome J</creatorcontrib><creatorcontrib>Luo, Yun L</creatorcontrib><title>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.</description><subject>Binding energy</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Channels</subject><subject>Crosslinking</subject><subject>Free energy</subject><subject>High-throughput screening</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Modulators</subject><subject>Molecular dynamics</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtP3DAUhS3UqgxD1-yqSN10k-H6kTheVWg0wEgjDRKwYWPdeJwS6sSDnVDNv8cDlD5WftzPx_fcQ8gJhRkFyU-3PcYZ4xQU55TBAZmkLc1LoeADmQAwmVeCiUNyFOMDAKiigk_kkFdQQlGWE7K-HsJohjGgy7DfZMO9DZ3f7HrsWpM1ATv7y4efWeNDdrVc3K1plsqjw6H1fVbvstihc-nOWTM6G4_JxwZdtJ_f1im5PV_czC_z1fpiOT9b5UYwNuSGG6F4w6XhCLWoyrJSIKViNp0AKtogY8AblHVVY1NsEEEWKK0S1MpC8Cn5_qq7HevObozth2RBb0PbYdhpj63-t9K39_qHf9JpbGlejCeFb28KwT-ONg66a6OxzmFv_Rg1U8CUSI2xhH79D33wY-iTvxcKmGAVJOr0lTLBxxhs894Nhf23XO_T0n_SSi--_G3inf8dD38G4cqQzw</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Jiang, Wenjuan</creator><creator>Wijerathne, Tharaka D</creator><creator>Zhang, Han</creator><creator>Lin, Yi-Chun</creator><creator>Jo, Sunhwan</creator><creator>Im, Wonpil</creator><creator>Lacroix, Jerome J</creator><creator>Luo, Yun L</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0001-5642-6041</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid><orcidid>https://orcid.org/0000-0002-6900-3272</orcidid></search><sort><creationdate>20231212</creationdate><title>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</title><author>Jiang, Wenjuan ; Wijerathne, Tharaka D ; Zhang, Han ; Lin, Yi-Chun ; Jo, Sunhwan ; Im, Wonpil ; Lacroix, Jerome J ; Luo, Yun L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding energy</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Channels</topic><topic>Crosslinking</topic><topic>Free energy</topic><topic>High-throughput screening</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Modulators</topic><topic>Molecular dynamics</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Wijerathne, Tharaka D</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Jo, Sunhwan</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Lacroix, Jerome J</creatorcontrib><creatorcontrib>Luo, Yun L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wenjuan</au><au>Wijerathne, Tharaka D</au><au>Zhang, Han</au><au>Lin, Yi-Chun</au><au>Jo, Sunhwan</au><au>Im, Wonpil</au><au>Lacroix, Jerome J</au><au>Luo, Yun L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>120</volume><issue>50</issue><spage>e2310933120</spage><pages>e2310933120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38060566</pmid><doi>10.1073/pnas.2310933120</doi><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0001-5642-6041</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid><orcidid>https://orcid.org/0000-0002-6900-3272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (50), p.e2310933120 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10723123 |
source | Open Access: PubMed Central |
subjects | Binding energy Binding sites Biological Sciences Channels Crosslinking Free energy High-throughput screening Membrane proteins Membranes Modulators Molecular dynamics Pharmacology Physical Sciences Thermodynamics |
title | Structural and thermodynamic framework for PIEZO1 modulation by small molecules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20thermodynamic%20framework%20for%20PIEZO1%20modulation%20by%20small%20molecules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jiang,%20Wenjuan&rft.date=2023-12-12&rft.volume=120&rft.issue=50&rft.spage=e2310933120&rft.pages=e2310933120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2310933120&rft_dat=%3Cproquest_pubme%3E2902946682%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902024280&rft_id=info:pmid/38060566&rfr_iscdi=true |