Loading…

Structural and thermodynamic framework for PIEZO1 modulation by small molecules

Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screenin...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-12, Vol.120 (50), p.e2310933120
Main Authors: Jiang, Wenjuan, Wijerathne, Tharaka D, Zhang, Han, Lin, Yi-Chun, Jo, Sunhwan, Im, Wonpil, Lacroix, Jerome J, Luo, Yun L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543
cites cdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543
container_end_page
container_issue 50
container_start_page e2310933120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Jiang, Wenjuan
Wijerathne, Tharaka D
Zhang, Han
Lin, Yi-Chun
Jo, Sunhwan
Im, Wonpil
Lacroix, Jerome J
Luo, Yun L
description Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.
doi_str_mv 10.1073/pnas.2310933120
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10723123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902946682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</originalsourceid><addsrcrecordid>eNpdkUtP3DAUhS3UqgxD1-yqSN10k-H6kTheVWg0wEgjDRKwYWPdeJwS6sSDnVDNv8cDlD5WftzPx_fcQ8gJhRkFyU-3PcYZ4xQU55TBAZmkLc1LoeADmQAwmVeCiUNyFOMDAKiigk_kkFdQQlGWE7K-HsJohjGgy7DfZMO9DZ3f7HrsWpM1ATv7y4efWeNDdrVc3K1plsqjw6H1fVbvstihc-nOWTM6G4_JxwZdtJ_f1im5PV_czC_z1fpiOT9b5UYwNuSGG6F4w6XhCLWoyrJSIKViNp0AKtogY8AblHVVY1NsEEEWKK0S1MpC8Cn5_qq7HevObozth2RBb0PbYdhpj63-t9K39_qHf9JpbGlejCeFb28KwT-ONg66a6OxzmFv_Rg1U8CUSI2xhH79D33wY-iTvxcKmGAVJOr0lTLBxxhs894Nhf23XO_T0n_SSi--_G3inf8dD38G4cqQzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902024280</pqid></control><display><type>article</type><title>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</title><source>Open Access: PubMed Central</source><creator>Jiang, Wenjuan ; Wijerathne, Tharaka D ; Zhang, Han ; Lin, Yi-Chun ; Jo, Sunhwan ; Im, Wonpil ; Lacroix, Jerome J ; Luo, Yun L</creator><creatorcontrib>Jiang, Wenjuan ; Wijerathne, Tharaka D ; Zhang, Han ; Lin, Yi-Chun ; Jo, Sunhwan ; Im, Wonpil ; Lacroix, Jerome J ; Luo, Yun L</creatorcontrib><description>Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2310933120</identifier><identifier>PMID: 38060566</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding energy ; Binding sites ; Biological Sciences ; Channels ; Crosslinking ; Free energy ; High-throughput screening ; Membrane proteins ; Membranes ; Modulators ; Molecular dynamics ; Pharmacology ; Physical Sciences ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (50), p.e2310933120</ispartof><rights>Copyright National Academy of Sciences Dec 12, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</citedby><cites>FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</cites><orcidid>0000-0001-5687-0652 ; 0000-0001-5642-6041 ; 0000-0003-3581-754X ; 0000-0002-6900-3272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38060566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Wijerathne, Tharaka D</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Jo, Sunhwan</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Lacroix, Jerome J</creatorcontrib><creatorcontrib>Luo, Yun L</creatorcontrib><title>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.</description><subject>Binding energy</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Channels</subject><subject>Crosslinking</subject><subject>Free energy</subject><subject>High-throughput screening</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Modulators</subject><subject>Molecular dynamics</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtP3DAUhS3UqgxD1-yqSN10k-H6kTheVWg0wEgjDRKwYWPdeJwS6sSDnVDNv8cDlD5WftzPx_fcQ8gJhRkFyU-3PcYZ4xQU55TBAZmkLc1LoeADmQAwmVeCiUNyFOMDAKiigk_kkFdQQlGWE7K-HsJohjGgy7DfZMO9DZ3f7HrsWpM1ATv7y4efWeNDdrVc3K1plsqjw6H1fVbvstihc-nOWTM6G4_JxwZdtJ_f1im5PV_czC_z1fpiOT9b5UYwNuSGG6F4w6XhCLWoyrJSIKViNp0AKtogY8AblHVVY1NsEEEWKK0S1MpC8Cn5_qq7HevObozth2RBb0PbYdhpj63-t9K39_qHf9JpbGlejCeFb28KwT-ONg66a6OxzmFv_Rg1U8CUSI2xhH79D33wY-iTvxcKmGAVJOr0lTLBxxhs894Nhf23XO_T0n_SSi--_G3inf8dD38G4cqQzw</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Jiang, Wenjuan</creator><creator>Wijerathne, Tharaka D</creator><creator>Zhang, Han</creator><creator>Lin, Yi-Chun</creator><creator>Jo, Sunhwan</creator><creator>Im, Wonpil</creator><creator>Lacroix, Jerome J</creator><creator>Luo, Yun L</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0001-5642-6041</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid><orcidid>https://orcid.org/0000-0002-6900-3272</orcidid></search><sort><creationdate>20231212</creationdate><title>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</title><author>Jiang, Wenjuan ; Wijerathne, Tharaka D ; Zhang, Han ; Lin, Yi-Chun ; Jo, Sunhwan ; Im, Wonpil ; Lacroix, Jerome J ; Luo, Yun L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding energy</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Channels</topic><topic>Crosslinking</topic><topic>Free energy</topic><topic>High-throughput screening</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Modulators</topic><topic>Molecular dynamics</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Wijerathne, Tharaka D</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Jo, Sunhwan</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Lacroix, Jerome J</creatorcontrib><creatorcontrib>Luo, Yun L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wenjuan</au><au>Wijerathne, Tharaka D</au><au>Zhang, Han</au><au>Lin, Yi-Chun</au><au>Jo, Sunhwan</au><au>Im, Wonpil</au><au>Lacroix, Jerome J</au><au>Luo, Yun L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and thermodynamic framework for PIEZO1 modulation by small molecules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>120</volume><issue>50</issue><spage>e2310933120</spage><pages>e2310933120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38060566</pmid><doi>10.1073/pnas.2310933120</doi><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0001-5642-6041</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid><orcidid>https://orcid.org/0000-0002-6900-3272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-12, Vol.120 (50), p.e2310933120
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10723123
source Open Access: PubMed Central
subjects Binding energy
Binding sites
Biological Sciences
Channels
Crosslinking
Free energy
High-throughput screening
Membrane proteins
Membranes
Modulators
Molecular dynamics
Pharmacology
Physical Sciences
Thermodynamics
title Structural and thermodynamic framework for PIEZO1 modulation by small molecules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20thermodynamic%20framework%20for%20PIEZO1%20modulation%20by%20small%20molecules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jiang,%20Wenjuan&rft.date=2023-12-12&rft.volume=120&rft.issue=50&rft.spage=e2310933120&rft.pages=e2310933120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2310933120&rft_dat=%3Cproquest_pubme%3E2902946682%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-c3c493f37c3a0b48668907792e0b40081fa2203fa7b8baf5daa075a7e941e7543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902024280&rft_id=info:pmid/38060566&rfr_iscdi=true