Loading…

Photodynamic Therapy Minimally Affects HEMA-DMAEMA Hydrogel Viscoelasticity

Soft matter implants are a rapidly growing field in medicine for reconstructive surgery, aesthetic treatments, and regenerative medicine. Though these procedures are efficacious, all implants carry risks associated with microbial infection which are often aggressive. Preventative and responsive meas...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular bioscience 2023-11, Vol.23 (11), p.e2300124-e2300124
Main Authors: Willis, Jace A, Trevino, Alexandria, Nguyen, Calvin, Benjamin, Chandler C, Yakovlev, Vladislav V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763
cites cdi_FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763
container_end_page e2300124
container_issue 11
container_start_page e2300124
container_title Macromolecular bioscience
container_volume 23
creator Willis, Jace A
Trevino, Alexandria
Nguyen, Calvin
Benjamin, Chandler C
Yakovlev, Vladislav V
description Soft matter implants are a rapidly growing field in medicine for reconstructive surgery, aesthetic treatments, and regenerative medicine. Though these procedures are efficacious, all implants carry risks associated with microbial infection which are often aggressive. Preventative and responsive measures exist but are limited in applicability to soft materials. Photodynamic therapy (PDT) presents a means to perform safe and effective antimicrobial treatments in proximity to soft implants. HEMA-DMAEMA hydrogels are prepared with the photosensitizer methylene blue included at 10 and 100 µM in solution used for swelling over 2 or 4 days. Thirty minutes or 5 h of LED illumination at is then used for PDT-induced generation of reactive oxygen species in direct contact with hydrogels to test viable limits of treatment. Frequency sweep rheological measurements reveal minimal overall changes in terms of loss modulus and loss factor but a statistically significant drop in storage modulus for some PDT doses, though within the range of controls and biological variation. These mild impacts suggest the feasibility of PDT application for infection clearing in proximity to soft implants. Future investigation with additional hydrogel varieties and current implant models will further detail the safety of PDT in implant applications.
doi_str_mv 10.1002/mabi.202300124
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10733547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828361906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVISZy01xzDQi69rKuvlbSnYBw3Do1pD26vQquPWGZ35Urrwv73lXFi0p5mYH7zZh4PgBsEpwhC_KVTjZ9iiAmECNMzMEEMsbJCdXV-6gW_BFcpbTPCRY0vwCXhhCIhqgn49mMThmDGXnVeF-uNjWo3Fivf-0617VjMnLN6SMVysZqVD6tZLsVyNDG82Lb45ZMOtlVp8NoP40fwwak22U-v9Rr8_LpYz5fl8_fHp_nsudQU1UPJqeOCWwexENg0gkJFhYOOUWYIckxzVnMjEMWsbhyra9wgA6HmymiDOSPX4P6ou9s3nTXa9kNUrdzF_HMcZVBe_jvp_Ua-hD8SQU5IRXlW-PyqEMPvvU2D7LIV27aqt2GfJBZYEIZqeDh29x-6DfvYZ3-ZEgxVUGCYqemR0jGkFK07fYOgPAQlD0HJU1B54fa9hxP-lgz5C81tjdY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886150820</pqid></control><display><type>article</type><title>Photodynamic Therapy Minimally Affects HEMA-DMAEMA Hydrogel Viscoelasticity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Willis, Jace A ; Trevino, Alexandria ; Nguyen, Calvin ; Benjamin, Chandler C ; Yakovlev, Vladislav V</creator><creatorcontrib>Willis, Jace A ; Trevino, Alexandria ; Nguyen, Calvin ; Benjamin, Chandler C ; Yakovlev, Vladislav V</creatorcontrib><description>Soft matter implants are a rapidly growing field in medicine for reconstructive surgery, aesthetic treatments, and regenerative medicine. Though these procedures are efficacious, all implants carry risks associated with microbial infection which are often aggressive. Preventative and responsive measures exist but are limited in applicability to soft materials. Photodynamic therapy (PDT) presents a means to perform safe and effective antimicrobial treatments in proximity to soft implants. HEMA-DMAEMA hydrogels are prepared with the photosensitizer methylene blue included at 10 and 100 µM in solution used for swelling over 2 or 4 days. Thirty minutes or 5 h of LED illumination at is then used for PDT-induced generation of reactive oxygen species in direct contact with hydrogels to test viable limits of treatment. Frequency sweep rheological measurements reveal minimal overall changes in terms of loss modulus and loss factor but a statistically significant drop in storage modulus for some PDT doses, though within the range of controls and biological variation. These mild impacts suggest the feasibility of PDT application for infection clearing in proximity to soft implants. Future investigation with additional hydrogel varieties and current implant models will further detail the safety of PDT in implant applications.</description><identifier>ISSN: 1616-5187</identifier><identifier>ISSN: 1616-5195</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300124</identifier><identifier>PMID: 37341885</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Hydrogels ; Hydrogels - pharmacology ; Implants ; Loss modulus ; Methacrylates ; Methylene blue ; Methylene Blue - pharmacology ; Microorganisms ; Photochemotherapy - methods ; Photodynamic therapy ; Photosensitizing Agents - pharmacology ; Photosensitizing Agents - therapeutic use ; Plastic surgery ; Reactive oxygen species ; Reconstructive surgery ; Regenerative medicine ; Rheological properties ; Statistical analysis ; Storage modulus ; Transplants &amp; implants ; Viscoelasticity</subject><ispartof>Macromolecular bioscience, 2023-11, Vol.23 (11), p.e2300124-e2300124</ispartof><rights>2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763</citedby><cites>FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763</cites><orcidid>0000-0002-4557-1013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37341885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willis, Jace A</creatorcontrib><creatorcontrib>Trevino, Alexandria</creatorcontrib><creatorcontrib>Nguyen, Calvin</creatorcontrib><creatorcontrib>Benjamin, Chandler C</creatorcontrib><creatorcontrib>Yakovlev, Vladislav V</creatorcontrib><title>Photodynamic Therapy Minimally Affects HEMA-DMAEMA Hydrogel Viscoelasticity</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Soft matter implants are a rapidly growing field in medicine for reconstructive surgery, aesthetic treatments, and regenerative medicine. Though these procedures are efficacious, all implants carry risks associated with microbial infection which are often aggressive. Preventative and responsive measures exist but are limited in applicability to soft materials. Photodynamic therapy (PDT) presents a means to perform safe and effective antimicrobial treatments in proximity to soft implants. HEMA-DMAEMA hydrogels are prepared with the photosensitizer methylene blue included at 10 and 100 µM in solution used for swelling over 2 or 4 days. Thirty minutes or 5 h of LED illumination at is then used for PDT-induced generation of reactive oxygen species in direct contact with hydrogels to test viable limits of treatment. Frequency sweep rheological measurements reveal minimal overall changes in terms of loss modulus and loss factor but a statistically significant drop in storage modulus for some PDT doses, though within the range of controls and biological variation. These mild impacts suggest the feasibility of PDT application for infection clearing in proximity to soft implants. Future investigation with additional hydrogel varieties and current implant models will further detail the safety of PDT in implant applications.</description><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Implants</subject><subject>Loss modulus</subject><subject>Methacrylates</subject><subject>Methylene blue</subject><subject>Methylene Blue - pharmacology</subject><subject>Microorganisms</subject><subject>Photochemotherapy - methods</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Photosensitizing Agents - therapeutic use</subject><subject>Plastic surgery</subject><subject>Reactive oxygen species</subject><subject>Reconstructive surgery</subject><subject>Regenerative medicine</subject><subject>Rheological properties</subject><subject>Statistical analysis</subject><subject>Storage modulus</subject><subject>Transplants &amp; implants</subject><subject>Viscoelasticity</subject><issn>1616-5187</issn><issn>1616-5195</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVISZy01xzDQi69rKuvlbSnYBw3Do1pD26vQquPWGZ35Urrwv73lXFi0p5mYH7zZh4PgBsEpwhC_KVTjZ9iiAmECNMzMEEMsbJCdXV-6gW_BFcpbTPCRY0vwCXhhCIhqgn49mMThmDGXnVeF-uNjWo3Fivf-0617VjMnLN6SMVysZqVD6tZLsVyNDG82Lb45ZMOtlVp8NoP40fwwak22U-v9Rr8_LpYz5fl8_fHp_nsudQU1UPJqeOCWwexENg0gkJFhYOOUWYIckxzVnMjEMWsbhyra9wgA6HmymiDOSPX4P6ou9s3nTXa9kNUrdzF_HMcZVBe_jvp_Ua-hD8SQU5IRXlW-PyqEMPvvU2D7LIV27aqt2GfJBZYEIZqeDh29x-6DfvYZ3-ZEgxVUGCYqemR0jGkFK07fYOgPAQlD0HJU1B54fa9hxP-lgz5C81tjdY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Willis, Jace A</creator><creator>Trevino, Alexandria</creator><creator>Nguyen, Calvin</creator><creator>Benjamin, Chandler C</creator><creator>Yakovlev, Vladislav V</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4557-1013</orcidid></search><sort><creationdate>20231101</creationdate><title>Photodynamic Therapy Minimally Affects HEMA-DMAEMA Hydrogel Viscoelasticity</title><author>Willis, Jace A ; Trevino, Alexandria ; Nguyen, Calvin ; Benjamin, Chandler C ; Yakovlev, Vladislav V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Implants</topic><topic>Loss modulus</topic><topic>Methacrylates</topic><topic>Methylene blue</topic><topic>Methylene Blue - pharmacology</topic><topic>Microorganisms</topic><topic>Photochemotherapy - methods</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Photosensitizing Agents - therapeutic use</topic><topic>Plastic surgery</topic><topic>Reactive oxygen species</topic><topic>Reconstructive surgery</topic><topic>Regenerative medicine</topic><topic>Rheological properties</topic><topic>Statistical analysis</topic><topic>Storage modulus</topic><topic>Transplants &amp; implants</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Jace A</creatorcontrib><creatorcontrib>Trevino, Alexandria</creatorcontrib><creatorcontrib>Nguyen, Calvin</creatorcontrib><creatorcontrib>Benjamin, Chandler C</creatorcontrib><creatorcontrib>Yakovlev, Vladislav V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Jace A</au><au>Trevino, Alexandria</au><au>Nguyen, Calvin</au><au>Benjamin, Chandler C</au><au>Yakovlev, Vladislav V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodynamic Therapy Minimally Affects HEMA-DMAEMA Hydrogel Viscoelasticity</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>23</volume><issue>11</issue><spage>e2300124</spage><epage>e2300124</epage><pages>e2300124-e2300124</pages><issn>1616-5187</issn><issn>1616-5195</issn><eissn>1616-5195</eissn><abstract>Soft matter implants are a rapidly growing field in medicine for reconstructive surgery, aesthetic treatments, and regenerative medicine. Though these procedures are efficacious, all implants carry risks associated with microbial infection which are often aggressive. Preventative and responsive measures exist but are limited in applicability to soft materials. Photodynamic therapy (PDT) presents a means to perform safe and effective antimicrobial treatments in proximity to soft implants. HEMA-DMAEMA hydrogels are prepared with the photosensitizer methylene blue included at 10 and 100 µM in solution used for swelling over 2 or 4 days. Thirty minutes or 5 h of LED illumination at is then used for PDT-induced generation of reactive oxygen species in direct contact with hydrogels to test viable limits of treatment. Frequency sweep rheological measurements reveal minimal overall changes in terms of loss modulus and loss factor but a statistically significant drop in storage modulus for some PDT doses, though within the range of controls and biological variation. These mild impacts suggest the feasibility of PDT application for infection clearing in proximity to soft implants. Future investigation with additional hydrogel varieties and current implant models will further detail the safety of PDT in implant applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37341885</pmid><doi>10.1002/mabi.202300124</doi><orcidid>https://orcid.org/0000-0002-4557-1013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2023-11, Vol.23 (11), p.e2300124-e2300124
issn 1616-5187
1616-5195
1616-5195
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10733547
source Wiley-Blackwell Read & Publish Collection
subjects Hydrogels
Hydrogels - pharmacology
Implants
Loss modulus
Methacrylates
Methylene blue
Methylene Blue - pharmacology
Microorganisms
Photochemotherapy - methods
Photodynamic therapy
Photosensitizing Agents - pharmacology
Photosensitizing Agents - therapeutic use
Plastic surgery
Reactive oxygen species
Reconstructive surgery
Regenerative medicine
Rheological properties
Statistical analysis
Storage modulus
Transplants & implants
Viscoelasticity
title Photodynamic Therapy Minimally Affects HEMA-DMAEMA Hydrogel Viscoelasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodynamic%20Therapy%20Minimally%20Affects%20HEMA-DMAEMA%20Hydrogel%20Viscoelasticity&rft.jtitle=Macromolecular%20bioscience&rft.au=Willis,%20Jace%20A&rft.date=2023-11-01&rft.volume=23&rft.issue=11&rft.spage=e2300124&rft.epage=e2300124&rft.pages=e2300124-e2300124&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300124&rft_dat=%3Cproquest_pubme%3E2828361906%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-74f787ef02882db840a48f0f646d31f6c7697d814269bf6992b1d00c7adcd2763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886150820&rft_id=info:pmid/37341885&rfr_iscdi=true