Loading…

Extracellular vesicle features are associated with COVID‐19 severity

COVID‐19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID‐19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine 2023-12, Vol.27 (24), p.4107-4117
Main Authors: Caponnetto, Federica, De Martino, Maria, Stefanizzi, Daniele, Del Sal, Riccardo, Manini, Ivana, Kharrat, Feras, D'Aurizio, Federica, Fabris, Martina, Visentini, Daniela, Poz, Donatella, Sozio, Emanuela, Tascini, Carlo, Cesselli, Daniela, Isola, Miriam, Beltrami, Antonio Paolo, Curcio, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4086-f88df7f992fe72d72f143f1ac99608ada5a8d5015b1d8529e96ab9721e13f5a13
container_end_page 4117
container_issue 24
container_start_page 4107
container_title Journal of cellular and molecular medicine
container_volume 27
creator Caponnetto, Federica
De Martino, Maria
Stefanizzi, Daniele
Del Sal, Riccardo
Manini, Ivana
Kharrat, Feras
D'Aurizio, Federica
Fabris, Martina
Visentini, Daniela
Poz, Donatella
Sozio, Emanuela
Tascini, Carlo
Cesselli, Daniela
Isola, Miriam
Beltrami, Antonio Paolo
Curcio, Francesco
description COVID‐19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID‐19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID‐19 patients. A total of 146 patients with severe or critical COVID‐19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID‐19 patients' plasma EVs was conducted. Elastic net logistic regression with cross‐validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA‐DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N‐cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N‐terminal pro‐brain natriuretic peptide (NT‐proBNP), age, procalcitonin, Charlson Comorbidity Index and pro‐adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.
doi_str_mv 10.1111/jcmm.17996
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10746943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890363157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4086-f88df7f992fe72d72f143f1ac99608ada5a8d5015b1d8529e96ab9721e13f5a13</originalsourceid><addsrcrecordid>eNp9kc1O4zAURi00CDrAhgcYRZoNGqngGzuxvUKotPwIxAbYWm5yDa6SpthJme7mEeYZ50lwaUEMC7yxJR8dffd-hOwDPYR4jiZFXR-CUCrfID3IZNrnivFv6zdIJrfJ9xAmlLIcmNoi20yonAvGe2Q0_N16U2BVdZXxyRyDKypMLJq28xgS4zExITSFMy2WybNrH5PBzf3F6b8_f0ElAefoXbvYJZvWVAH31vcOuRsNbwfn_aubs4vByVW_4FTmfStlaYVVKrUo0lKkFjizYIqYnUpTmszIMqOQjaGUWapQ5WasRAoIzGYG2A45Xnln3bjGssBpTF_pmXe18QvdGKf__5m6R_3QzDVQwXPFWTQcrA2-eeowtLp2YTm_mWLTBZ1KFdfEIBMR_fkJnTSdn8b5dKooVzGnVJH6taIK34Tg0b6nAaqX_ehlP_q1nwj_-Jj_HX0rJAKwAp5dhYsvVPpycH29kr4AwFKb6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904901589</pqid></control><display><type>article</type><title>Extracellular vesicle features are associated with COVID‐19 severity</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Caponnetto, Federica ; De Martino, Maria ; Stefanizzi, Daniele ; Del Sal, Riccardo ; Manini, Ivana ; Kharrat, Feras ; D'Aurizio, Federica ; Fabris, Martina ; Visentini, Daniela ; Poz, Donatella ; Sozio, Emanuela ; Tascini, Carlo ; Cesselli, Daniela ; Isola, Miriam ; Beltrami, Antonio Paolo ; Curcio, Francesco</creator><creatorcontrib>Caponnetto, Federica ; De Martino, Maria ; Stefanizzi, Daniele ; Del Sal, Riccardo ; Manini, Ivana ; Kharrat, Feras ; D'Aurizio, Federica ; Fabris, Martina ; Visentini, Daniela ; Poz, Donatella ; Sozio, Emanuela ; Tascini, Carlo ; Cesselli, Daniela ; Isola, Miriam ; Beltrami, Antonio Paolo ; Curcio, Francesco</creatorcontrib><description>COVID‐19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID‐19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID‐19 patients. A total of 146 patients with severe or critical COVID‐19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID‐19 patients' plasma EVs was conducted. Elastic net logistic regression with cross‐validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA‐DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N‐cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N‐terminal pro‐brain natriuretic peptide (NT‐proBNP), age, procalcitonin, Charlson Comorbidity Index and pro‐adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.17996</identifier><identifier>PMID: 37964734</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adrenomedullin ; Antibodies ; apoptotic bodies ; biomarker ; Biomarkers ; Blood platelets ; Brain natriuretic peptide ; Comorbidity ; Coronaviruses ; COVID-19 ; Cytokines ; exosomes ; Extracellular vesicles ; Fines &amp; penalties ; Flow cytometry ; Hematology ; Histocompatibility antigen HLA ; Infections ; Interleukin 6 ; Lymphocytes ; machine learning ; microvesicles ; Monocytes ; N-Cadherin ; Original ; outcomes ; Pandemics ; Physiology ; Plasma ; Procalcitonin ; Regression analysis ; SARS‐CoV2 ; Severe acute respiratory syndrome ; Variables</subject><ispartof>Journal of cellular and molecular medicine, 2023-12, Vol.27 (24), p.4107-4117</ispartof><rights>2023 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4086-f88df7f992fe72d72f143f1ac99608ada5a8d5015b1d8529e96ab9721e13f5a13</cites><orcidid>0000-0002-0679-2710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904901589/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904901589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37964734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caponnetto, Federica</creatorcontrib><creatorcontrib>De Martino, Maria</creatorcontrib><creatorcontrib>Stefanizzi, Daniele</creatorcontrib><creatorcontrib>Del Sal, Riccardo</creatorcontrib><creatorcontrib>Manini, Ivana</creatorcontrib><creatorcontrib>Kharrat, Feras</creatorcontrib><creatorcontrib>D'Aurizio, Federica</creatorcontrib><creatorcontrib>Fabris, Martina</creatorcontrib><creatorcontrib>Visentini, Daniela</creatorcontrib><creatorcontrib>Poz, Donatella</creatorcontrib><creatorcontrib>Sozio, Emanuela</creatorcontrib><creatorcontrib>Tascini, Carlo</creatorcontrib><creatorcontrib>Cesselli, Daniela</creatorcontrib><creatorcontrib>Isola, Miriam</creatorcontrib><creatorcontrib>Beltrami, Antonio Paolo</creatorcontrib><creatorcontrib>Curcio, Francesco</creatorcontrib><title>Extracellular vesicle features are associated with COVID‐19 severity</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>COVID‐19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID‐19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID‐19 patients. A total of 146 patients with severe or critical COVID‐19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID‐19 patients' plasma EVs was conducted. Elastic net logistic regression with cross‐validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA‐DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N‐cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N‐terminal pro‐brain natriuretic peptide (NT‐proBNP), age, procalcitonin, Charlson Comorbidity Index and pro‐adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.</description><subject>Adrenomedullin</subject><subject>Antibodies</subject><subject>apoptotic bodies</subject><subject>biomarker</subject><subject>Biomarkers</subject><subject>Blood platelets</subject><subject>Brain natriuretic peptide</subject><subject>Comorbidity</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cytokines</subject><subject>exosomes</subject><subject>Extracellular vesicles</subject><subject>Fines &amp; penalties</subject><subject>Flow cytometry</subject><subject>Hematology</subject><subject>Histocompatibility antigen HLA</subject><subject>Infections</subject><subject>Interleukin 6</subject><subject>Lymphocytes</subject><subject>machine learning</subject><subject>microvesicles</subject><subject>Monocytes</subject><subject>N-Cadherin</subject><subject>Original</subject><subject>outcomes</subject><subject>Pandemics</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Procalcitonin</subject><subject>Regression analysis</subject><subject>SARS‐CoV2</subject><subject>Severe acute respiratory syndrome</subject><subject>Variables</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1O4zAURi00CDrAhgcYRZoNGqngGzuxvUKotPwIxAbYWm5yDa6SpthJme7mEeYZ50lwaUEMC7yxJR8dffd-hOwDPYR4jiZFXR-CUCrfID3IZNrnivFv6zdIJrfJ9xAmlLIcmNoi20yonAvGe2Q0_N16U2BVdZXxyRyDKypMLJq28xgS4zExITSFMy2WybNrH5PBzf3F6b8_f0ElAefoXbvYJZvWVAH31vcOuRsNbwfn_aubs4vByVW_4FTmfStlaYVVKrUo0lKkFjizYIqYnUpTmszIMqOQjaGUWapQ5WasRAoIzGYG2A45Xnln3bjGssBpTF_pmXe18QvdGKf__5m6R_3QzDVQwXPFWTQcrA2-eeowtLp2YTm_mWLTBZ1KFdfEIBMR_fkJnTSdn8b5dKooVzGnVJH6taIK34Tg0b6nAaqX_ehlP_q1nwj_-Jj_HX0rJAKwAp5dhYsvVPpycH29kr4AwFKb6A</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Caponnetto, Federica</creator><creator>De Martino, Maria</creator><creator>Stefanizzi, Daniele</creator><creator>Del Sal, Riccardo</creator><creator>Manini, Ivana</creator><creator>Kharrat, Feras</creator><creator>D'Aurizio, Federica</creator><creator>Fabris, Martina</creator><creator>Visentini, Daniela</creator><creator>Poz, Donatella</creator><creator>Sozio, Emanuela</creator><creator>Tascini, Carlo</creator><creator>Cesselli, Daniela</creator><creator>Isola, Miriam</creator><creator>Beltrami, Antonio Paolo</creator><creator>Curcio, Francesco</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0679-2710</orcidid></search><sort><creationdate>202312</creationdate><title>Extracellular vesicle features are associated with COVID‐19 severity</title><author>Caponnetto, Federica ; De Martino, Maria ; Stefanizzi, Daniele ; Del Sal, Riccardo ; Manini, Ivana ; Kharrat, Feras ; D'Aurizio, Federica ; Fabris, Martina ; Visentini, Daniela ; Poz, Donatella ; Sozio, Emanuela ; Tascini, Carlo ; Cesselli, Daniela ; Isola, Miriam ; Beltrami, Antonio Paolo ; Curcio, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4086-f88df7f992fe72d72f143f1ac99608ada5a8d5015b1d8529e96ab9721e13f5a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adrenomedullin</topic><topic>Antibodies</topic><topic>apoptotic bodies</topic><topic>biomarker</topic><topic>Biomarkers</topic><topic>Blood platelets</topic><topic>Brain natriuretic peptide</topic><topic>Comorbidity</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cytokines</topic><topic>exosomes</topic><topic>Extracellular vesicles</topic><topic>Fines &amp; penalties</topic><topic>Flow cytometry</topic><topic>Hematology</topic><topic>Histocompatibility antigen HLA</topic><topic>Infections</topic><topic>Interleukin 6</topic><topic>Lymphocytes</topic><topic>machine learning</topic><topic>microvesicles</topic><topic>Monocytes</topic><topic>N-Cadherin</topic><topic>Original</topic><topic>outcomes</topic><topic>Pandemics</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Procalcitonin</topic><topic>Regression analysis</topic><topic>SARS‐CoV2</topic><topic>Severe acute respiratory syndrome</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caponnetto, Federica</creatorcontrib><creatorcontrib>De Martino, Maria</creatorcontrib><creatorcontrib>Stefanizzi, Daniele</creatorcontrib><creatorcontrib>Del Sal, Riccardo</creatorcontrib><creatorcontrib>Manini, Ivana</creatorcontrib><creatorcontrib>Kharrat, Feras</creatorcontrib><creatorcontrib>D'Aurizio, Federica</creatorcontrib><creatorcontrib>Fabris, Martina</creatorcontrib><creatorcontrib>Visentini, Daniela</creatorcontrib><creatorcontrib>Poz, Donatella</creatorcontrib><creatorcontrib>Sozio, Emanuela</creatorcontrib><creatorcontrib>Tascini, Carlo</creatorcontrib><creatorcontrib>Cesselli, Daniela</creatorcontrib><creatorcontrib>Isola, Miriam</creatorcontrib><creatorcontrib>Beltrami, Antonio Paolo</creatorcontrib><creatorcontrib>Curcio, Francesco</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caponnetto, Federica</au><au>De Martino, Maria</au><au>Stefanizzi, Daniele</au><au>Del Sal, Riccardo</au><au>Manini, Ivana</au><au>Kharrat, Feras</au><au>D'Aurizio, Federica</au><au>Fabris, Martina</au><au>Visentini, Daniela</au><au>Poz, Donatella</au><au>Sozio, Emanuela</au><au>Tascini, Carlo</au><au>Cesselli, Daniela</au><au>Isola, Miriam</au><au>Beltrami, Antonio Paolo</au><au>Curcio, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular vesicle features are associated with COVID‐19 severity</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2023-12</date><risdate>2023</risdate><volume>27</volume><issue>24</issue><spage>4107</spage><epage>4117</epage><pages>4107-4117</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>COVID‐19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID‐19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID‐19 patients. A total of 146 patients with severe or critical COVID‐19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID‐19 patients' plasma EVs was conducted. Elastic net logistic regression with cross‐validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA‐DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N‐cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N‐terminal pro‐brain natriuretic peptide (NT‐proBNP), age, procalcitonin, Charlson Comorbidity Index and pro‐adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37964734</pmid><doi>10.1111/jcmm.17996</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0679-2710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2023-12, Vol.27 (24), p.4107-4117
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10746943
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects Adrenomedullin
Antibodies
apoptotic bodies
biomarker
Biomarkers
Blood platelets
Brain natriuretic peptide
Comorbidity
Coronaviruses
COVID-19
Cytokines
exosomes
Extracellular vesicles
Fines & penalties
Flow cytometry
Hematology
Histocompatibility antigen HLA
Infections
Interleukin 6
Lymphocytes
machine learning
microvesicles
Monocytes
N-Cadherin
Original
outcomes
Pandemics
Physiology
Plasma
Procalcitonin
Regression analysis
SARS‐CoV2
Severe acute respiratory syndrome
Variables
title Extracellular vesicle features are associated with COVID‐19 severity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20vesicle%20features%20are%20associated%20with%20COVID%E2%80%9019%20severity&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Caponnetto,%20Federica&rft.date=2023-12&rft.volume=27&rft.issue=24&rft.spage=4107&rft.epage=4117&rft.pages=4107-4117&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.17996&rft_dat=%3Cproquest_pubme%3E2890363157%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4086-f88df7f992fe72d72f143f1ac99608ada5a8d5015b1d8529e96ab9721e13f5a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904901589&rft_id=info:pmid/37964734&rfr_iscdi=true