Loading…
Systemic immunometabolism and responses to vaccines: insights from T and B cell perspectives
Abstract Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminishe...
Saved in:
Published in: | International immunology 2023-12, Vol.35 (12), p.571-582 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminished vaccine responses and efficacy. While the specific factors contributing to this impairment may vary, these individuals typically display a degree of metabolic dysregulation, thereby underscoring its potential significance as a fundamental determinant of suboptimal vaccine responses. The emerging field of immunometabolism aims to unravel the intricate interplay between immune regulation and metabolic pathways, and recent research has revealed diverse metabolic signatures linked to various vaccine responses and outcomes. In this review, we summarize the major metabolic pathways utilized by B and T cells during vaccine responses, their complex and varied metabolic requirements, and the impact of micronutrients and metabolic hormones on vaccine outcomes. Furthermore, we examine how systemic metabolism influences vaccine responses and the evidence suggesting that metabolic dysregulation in vulnerable populations can lead to impaired vaccine responses. Lastly, we reflect on the challenge of proving causality with respect to the contribution of metabolic dysregulation to poor vaccine outcomes, and highlight the need for a systems biology approach that combines multimodal profiling and mathematical modelling to reveal the underlying mechanisms of such complex interactions.
Graphical Abstract
Graphical Abstract |
---|---|
ISSN: | 1460-2377 0953-8178 1460-2377 |
DOI: | 10.1093/intimm/dxad021 |