Loading…
Free-Base Corrole Anion
Free-base corroles have long been known to be acidic, readily undergoing deprotonation by mild bases and in polar solvents. The conjugate base, however, has not been structurally characterized until now. Presented here is a first crystal structure of a free-base corrole anion, derived from tris(p-c...
Saved in:
Published in: | Journal of organic chemistry 2023-09, Vol.88 (18), p.13022-13029 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Free-base corroles have long been known to be acidic, readily undergoing deprotonation by mild bases and in polar solvents. The conjugate base, however, has not been structurally characterized until now. Presented here is a first crystal structure of a free-base corrole anion, derived from tris(p-cyanophenyl)corrole, as the tetrabuylammonium salt. The low-temperature (100 K) structure reveals localized hydrogens on a pair of opposite pyrrole nitrogens. DFT calculations identify such a structure as the global minimum but also point to two cis tautomers only 4–7 kcal/mol above the ground state. In terms of free energy, however, the cis tautomers are above or essentially flush with the trans-to-cis barrier so the cis tautomers are unlikely to exist or be observed as true intermediates. Thus, the hydrogen bond within each dipyrrin unit on either side of the molecular pseudo-C 2 axis through C10 (i.e., between pyrrole rings A and B or between C and D) qualifies as or closely approaches a low-barrier hydrogen bond. Proton migration across the pseudo-C 2 axis entails much higher activation energies >20 kcal/mol, reflecting the relative rigidity of the molecule along the C1-C19 pyrrole-pyrrole linkage. |
---|---|
ISSN: | 0022-3263 1520-6904 1520-6904 |
DOI: | 10.1021/acs.joc.3c01125 |