Loading…

A comprehensive scrutiny to controlled dipolar interactions to intensify the self-heating efficiency of biopolymer encapsulated Tb doped magnetite nanoparticles

An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (MNPs). Remarkably, it has been demonstrated that dipole-di...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-01, Vol.14 (1), p.427-427
Main Authors: Hazarika, Krishna Priya, Borah, J P
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 427
container_issue 1
container_start_page 427
container_title Scientific reports
container_volume 14
creator Hazarika, Krishna Priya
Borah, J P
description An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (MNPs). Remarkably, it has been demonstrated that dipole-dipole interactions have a significant influence on nanoparticle dynamics. In this article, we present an exhaustive scrutiny of dipolar interactions and how this affects the efficiency of MFH applications. In particular, we prepare chitosan and dextran-coated Tb-doped MNPs and study whether it is possible to increase the heat released by controlling the dipole-dipole interactions. It has been indicated that even moderate control of agglomeration may substantially impact the structure and magnetization dynamics of the system. Besides estimating the specific loss power value, our findings provide a deep insight into the relaxation mechanisms and bring to light how to tune the self-heating efficacy towards magnetic hyperthermia.
doi_str_mv 10.1038/s41598-023-50635-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910192086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p311t-b2237949cbba8ab949e222955bb705dc97012dfc50b9e2506377de8ea938b7293</originalsourceid><addsrcrecordid>eNpVkctOxSAQhomJUaO-gAvD0k2VSzktK2OMt8TEzXHdAJ2eg6FQgRrP2_iocuIlyoaZ-f_5JgMInVByTglvL1JNhWwrwnglyIKL6n0HHTBSi4pxxvbRcUovpBzBZE3lHtrnLW3YgvID9HGFTRinCGvwyb4BTibO2foNzqEoPsfgHPS4t1NwKmLrM0Rlsg0-bS3bvDQOxb8uzeCGag2qAFYYhsEaC95scBiwtqEQNiNEXEpqSrNTuYCXGvdhKsGoVh6yzYC98mFSMVvjIB2h3UG5BMff9yF6vr1ZXt9Xj093D9dXj9XEKc2VZow3spZGa9UqXSJgjEkhtG6I6I1sCGX9YATRRdm-UtP00IKSvNUNk_wQXX5xp1mP0BsoqyvXTdGOKm66oGz3X_F23a3CW0dJs6il4IVw9k2I4XWGlLvRJgPOKQ9hTh2TlFDJSLso1tO_w36n_PwL_wSLp5US</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910192086</pqid></control><display><type>article</type><title>A comprehensive scrutiny to controlled dipolar interactions to intensify the self-heating efficiency of biopolymer encapsulated Tb doped magnetite nanoparticles</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hazarika, Krishna Priya ; Borah, J P</creator><creatorcontrib>Hazarika, Krishna Priya ; Borah, J P</creatorcontrib><description>An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (MNPs). Remarkably, it has been demonstrated that dipole-dipole interactions have a significant influence on nanoparticle dynamics. In this article, we present an exhaustive scrutiny of dipolar interactions and how this affects the efficiency of MFH applications. In particular, we prepare chitosan and dextran-coated Tb-doped MNPs and study whether it is possible to increase the heat released by controlling the dipole-dipole interactions. It has been indicated that even moderate control of agglomeration may substantially impact the structure and magnetization dynamics of the system. Besides estimating the specific loss power value, our findings provide a deep insight into the relaxation mechanisms and bring to light how to tune the self-heating efficacy towards magnetic hyperthermia.</description><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-50635-x</identifier><identifier>PMID: 38172613</identifier><language>eng</language><publisher>England: Nature Publishing Group UK</publisher><ispartof>Scientific reports, 2024-01, Vol.14 (1), p.427-427</ispartof><rights>2024. The Author(s).</rights><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764953/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764953/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38172613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hazarika, Krishna Priya</creatorcontrib><creatorcontrib>Borah, J P</creatorcontrib><title>A comprehensive scrutiny to controlled dipolar interactions to intensify the self-heating efficiency of biopolymer encapsulated Tb doped magnetite nanoparticles</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (MNPs). Remarkably, it has been demonstrated that dipole-dipole interactions have a significant influence on nanoparticle dynamics. In this article, we present an exhaustive scrutiny of dipolar interactions and how this affects the efficiency of MFH applications. In particular, we prepare chitosan and dextran-coated Tb-doped MNPs and study whether it is possible to increase the heat released by controlling the dipole-dipole interactions. It has been indicated that even moderate control of agglomeration may substantially impact the structure and magnetization dynamics of the system. Besides estimating the specific loss power value, our findings provide a deep insight into the relaxation mechanisms and bring to light how to tune the self-heating efficacy towards magnetic hyperthermia.</description><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkctOxSAQhomJUaO-gAvD0k2VSzktK2OMt8TEzXHdAJ2eg6FQgRrP2_iocuIlyoaZ-f_5JgMInVByTglvL1JNhWwrwnglyIKL6n0HHTBSi4pxxvbRcUovpBzBZE3lHtrnLW3YgvID9HGFTRinCGvwyb4BTibO2foNzqEoPsfgHPS4t1NwKmLrM0Rlsg0-bS3bvDQOxb8uzeCGag2qAFYYhsEaC95scBiwtqEQNiNEXEpqSrNTuYCXGvdhKsGoVh6yzYC98mFSMVvjIB2h3UG5BMff9yF6vr1ZXt9Xj093D9dXj9XEKc2VZow3spZGa9UqXSJgjEkhtG6I6I1sCGX9YATRRdm-UtP00IKSvNUNk_wQXX5xp1mP0BsoqyvXTdGOKm66oGz3X_F23a3CW0dJs6il4IVw9k2I4XWGlLvRJgPOKQ9hTh2TlFDJSLso1tO_w36n_PwL_wSLp5US</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Hazarika, Krishna Priya</creator><creator>Borah, J P</creator><general>Nature Publishing Group UK</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240103</creationdate><title>A comprehensive scrutiny to controlled dipolar interactions to intensify the self-heating efficiency of biopolymer encapsulated Tb doped magnetite nanoparticles</title><author>Hazarika, Krishna Priya ; Borah, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p311t-b2237949cbba8ab949e222955bb705dc97012dfc50b9e2506377de8ea938b7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazarika, Krishna Priya</creatorcontrib><creatorcontrib>Borah, J P</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazarika, Krishna Priya</au><au>Borah, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive scrutiny to controlled dipolar interactions to intensify the self-heating efficiency of biopolymer encapsulated Tb doped magnetite nanoparticles</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2024-01-03</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>427</spage><epage>427</epage><pages>427-427</pages><eissn>2045-2322</eissn><abstract>An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (MNPs). Remarkably, it has been demonstrated that dipole-dipole interactions have a significant influence on nanoparticle dynamics. In this article, we present an exhaustive scrutiny of dipolar interactions and how this affects the efficiency of MFH applications. In particular, we prepare chitosan and dextran-coated Tb-doped MNPs and study whether it is possible to increase the heat released by controlling the dipole-dipole interactions. It has been indicated that even moderate control of agglomeration may substantially impact the structure and magnetization dynamics of the system. Besides estimating the specific loss power value, our findings provide a deep insight into the relaxation mechanisms and bring to light how to tune the self-heating efficacy towards magnetic hyperthermia.</abstract><cop>England</cop><pub>Nature Publishing Group UK</pub><pmid>38172613</pmid><doi>10.1038/s41598-023-50635-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2024-01, Vol.14 (1), p.427-427
issn 2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764953
source Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
title A comprehensive scrutiny to controlled dipolar interactions to intensify the self-heating efficiency of biopolymer encapsulated Tb doped magnetite nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20scrutiny%20to%20controlled%20dipolar%20interactions%20to%20intensify%20the%20self-heating%20efficiency%20of%20biopolymer%20encapsulated%20Tb%20doped%20magnetite%20nanoparticles&rft.jtitle=Scientific%20reports&rft.au=Hazarika,%20Krishna%20Priya&rft.date=2024-01-03&rft.volume=14&rft.issue=1&rft.spage=427&rft.epage=427&rft.pages=427-427&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-50635-x&rft_dat=%3Cproquest_pubme%3E2910192086%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p311t-b2237949cbba8ab949e222955bb705dc97012dfc50b9e2506377de8ea938b7293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2910192086&rft_id=info:pmid/38172613&rfr_iscdi=true