Loading…

Deep Learning Models for Classification of Deciduous and Permanent Teeth From Digital Panoramic Images

Dental radiographs are essential in the diagnostic process in dentistry. They serve various purposes, including determining age, analyzing patterns of tooth eruption/shedding, and treatment planning and prognosis. The emergence of digital radiography technology has piqued interest in using artificia...

Full description

Saved in:
Bibliographic Details
Published in:Curēus (Palo Alto, CA) CA), 2023-12, Vol.15 (12), p.e49937-e49937
Main Authors: Jaiswal, Manoj, Sharma, Megha, Khandnor, Padmavati, Goyal, Ashima, Belokar, Rajendra, Harit, Sandeep, Sood, Tamanna, Goyal, Kanav, Dua, Pallavi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c300t-98ebfae3941e1339e73e606882c623e173f9cdeb64488c4622bd053a39d5301d3
container_end_page e49937
container_issue 12
container_start_page e49937
container_title Curēus (Palo Alto, CA)
container_volume 15
creator Jaiswal, Manoj
Sharma, Megha
Khandnor, Padmavati
Goyal, Ashima
Belokar, Rajendra
Harit, Sandeep
Sood, Tamanna
Goyal, Kanav
Dua, Pallavi
description Dental radiographs are essential in the diagnostic process in dentistry. They serve various purposes, including determining age, analyzing patterns of tooth eruption/shedding, and treatment planning and prognosis. The emergence of digital radiography technology has piqued interest in using artificial intelligence systems to assist and guide dental professionals. These cutting-edge technologies assist in streamlining decision-making processes by enabling entity classification and localization tasks. With the integration of artificial Intelligence algorithms tailored for pediatric dentistry applications and utilizing automated tools, there is an optimistic outlook on improving diagnostic capabilities while reducing stress and fatigue among clinicians. The dataset comprised 620 images (mixed dentition: 314, permanent dentition: 306). Panoramic radiographs taken were within the age range of 4-16 years. The classification of deciduous and permanent teeth involved training CNN-based models using different architectures such as Resnet, AlexNet, and EfficientNet, among others. A ratio of 70:15:15 was utilized for training, validation, and testing, respectively. The findings indicated that among the models proposed, EfficientNetB0 and EfficientNetB3 exhibited superior performance. Both EfficientNetB0 and EfficientNetB3 achieved an accuracy rate, precision, recall, and F1 scores of 98% in classifying teeth as either deciduous or permanent. This implies that these models were highly accurate in identifying patterns/features within the dataset used for evaluation.
doi_str_mv 10.7759/cureus.49937
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10765069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920548201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-98ebfae3941e1339e73e606882c623e173f9cdeb64488c4622bd053a39d5301d3</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqCDg1nNlqZceGvDXeu1TVSV8SUFwCGfL8c4mjnbt1N5F6n-PIRABpxlpfnp6bx5C3yk5q-tKn7sxwZjPhNa8_oKOGJVqoqgSX9_th-g05w0hhJKakZp8Q4dc0VpzUR2hdgawxXOwKfiwwrexgS7jNiY87WzOvvXODj4GHFs8A-ebMY4Z29Dge0i9DRAGvAAY1vgyxR7P_MoPtsP3NsRke-_wTW9XkE_QQWu7DKev8xg9XF4spteT-d3VzfTvfOI4IcNEK1i2FrgWFCjnGmoOkkilmJOMA615q10DSymEUk5IxpYNqbjluqk4oQ0_Rn92uttx2UPjir1kO7NNvrfpv4nWm4-X4NdmFR9N-Y2siNRF4derQor_RsiD6X120HUla4lumGZKCymYLOjPT-gmjimUfM8UqYRihBbq945yKeacoN27ocQ8l2h2JZqXEgv-432CPfxWGX8CchyZEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920548201</pqid></control><display><type>article</type><title>Deep Learning Models for Classification of Deciduous and Permanent Teeth From Digital Panoramic Images</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Jaiswal, Manoj ; Sharma, Megha ; Khandnor, Padmavati ; Goyal, Ashima ; Belokar, Rajendra ; Harit, Sandeep ; Sood, Tamanna ; Goyal, Kanav ; Dua, Pallavi</creator><creatorcontrib>Jaiswal, Manoj ; Sharma, Megha ; Khandnor, Padmavati ; Goyal, Ashima ; Belokar, Rajendra ; Harit, Sandeep ; Sood, Tamanna ; Goyal, Kanav ; Dua, Pallavi</creatorcontrib><description>Dental radiographs are essential in the diagnostic process in dentistry. They serve various purposes, including determining age, analyzing patterns of tooth eruption/shedding, and treatment planning and prognosis. The emergence of digital radiography technology has piqued interest in using artificial intelligence systems to assist and guide dental professionals. These cutting-edge technologies assist in streamlining decision-making processes by enabling entity classification and localization tasks. With the integration of artificial Intelligence algorithms tailored for pediatric dentistry applications and utilizing automated tools, there is an optimistic outlook on improving diagnostic capabilities while reducing stress and fatigue among clinicians. The dataset comprised 620 images (mixed dentition: 314, permanent dentition: 306). Panoramic radiographs taken were within the age range of 4-16 years. The classification of deciduous and permanent teeth involved training CNN-based models using different architectures such as Resnet, AlexNet, and EfficientNet, among others. A ratio of 70:15:15 was utilized for training, validation, and testing, respectively. The findings indicated that among the models proposed, EfficientNetB0 and EfficientNetB3 exhibited superior performance. Both EfficientNetB0 and EfficientNetB3 achieved an accuracy rate, precision, recall, and F1 scores of 98% in classifying teeth as either deciduous or permanent. This implies that these models were highly accurate in identifying patterns/features within the dataset used for evaluation.</description><identifier>ISSN: 2168-8184</identifier><identifier>EISSN: 2168-8184</identifier><identifier>DOI: 10.7759/cureus.49937</identifier><identifier>PMID: 38179345</identifier><language>eng</language><publisher>United States: Cureus Inc</publisher><subject>Artificial intelligence ; Collaboration ; Datasets ; Deep learning ; Dental surgery ; Dentistry ; Neural networks ; Pediatrics ; Radiography ; Radiology ; Teeth</subject><ispartof>Curēus (Palo Alto, CA), 2023-12, Vol.15 (12), p.e49937-e49937</ispartof><rights>Copyright © 2023, Jaiswal et al.</rights><rights>Copyright © 2023, Jaiswal et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2023, Jaiswal et al. 2023 Jaiswal et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-98ebfae3941e1339e73e606882c623e173f9cdeb64488c4622bd053a39d5301d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2920548201/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920548201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38179345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaiswal, Manoj</creatorcontrib><creatorcontrib>Sharma, Megha</creatorcontrib><creatorcontrib>Khandnor, Padmavati</creatorcontrib><creatorcontrib>Goyal, Ashima</creatorcontrib><creatorcontrib>Belokar, Rajendra</creatorcontrib><creatorcontrib>Harit, Sandeep</creatorcontrib><creatorcontrib>Sood, Tamanna</creatorcontrib><creatorcontrib>Goyal, Kanav</creatorcontrib><creatorcontrib>Dua, Pallavi</creatorcontrib><title>Deep Learning Models for Classification of Deciduous and Permanent Teeth From Digital Panoramic Images</title><title>Curēus (Palo Alto, CA)</title><addtitle>Cureus</addtitle><description>Dental radiographs are essential in the diagnostic process in dentistry. They serve various purposes, including determining age, analyzing patterns of tooth eruption/shedding, and treatment planning and prognosis. The emergence of digital radiography technology has piqued interest in using artificial intelligence systems to assist and guide dental professionals. These cutting-edge technologies assist in streamlining decision-making processes by enabling entity classification and localization tasks. With the integration of artificial Intelligence algorithms tailored for pediatric dentistry applications and utilizing automated tools, there is an optimistic outlook on improving diagnostic capabilities while reducing stress and fatigue among clinicians. The dataset comprised 620 images (mixed dentition: 314, permanent dentition: 306). Panoramic radiographs taken were within the age range of 4-16 years. The classification of deciduous and permanent teeth involved training CNN-based models using different architectures such as Resnet, AlexNet, and EfficientNet, among others. A ratio of 70:15:15 was utilized for training, validation, and testing, respectively. The findings indicated that among the models proposed, EfficientNetB0 and EfficientNetB3 exhibited superior performance. Both EfficientNetB0 and EfficientNetB3 achieved an accuracy rate, precision, recall, and F1 scores of 98% in classifying teeth as either deciduous or permanent. This implies that these models were highly accurate in identifying patterns/features within the dataset used for evaluation.</description><subject>Artificial intelligence</subject><subject>Collaboration</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dental surgery</subject><subject>Dentistry</subject><subject>Neural networks</subject><subject>Pediatrics</subject><subject>Radiography</subject><subject>Radiology</subject><subject>Teeth</subject><issn>2168-8184</issn><issn>2168-8184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1PGzEQxa2qqCDg1nNlqZceGvDXeu1TVSV8SUFwCGfL8c4mjnbt1N5F6n-PIRABpxlpfnp6bx5C3yk5q-tKn7sxwZjPhNa8_oKOGJVqoqgSX9_th-g05w0hhJKakZp8Q4dc0VpzUR2hdgawxXOwKfiwwrexgS7jNiY87WzOvvXODj4GHFs8A-ebMY4Z29Dge0i9DRAGvAAY1vgyxR7P_MoPtsP3NsRke-_wTW9XkE_QQWu7DKev8xg9XF4spteT-d3VzfTvfOI4IcNEK1i2FrgWFCjnGmoOkkilmJOMA615q10DSymEUk5IxpYNqbjluqk4oQ0_Rn92uttx2UPjir1kO7NNvrfpv4nWm4-X4NdmFR9N-Y2siNRF4derQor_RsiD6X120HUla4lumGZKCymYLOjPT-gmjimUfM8UqYRihBbq945yKeacoN27ocQ8l2h2JZqXEgv-432CPfxWGX8CchyZEQ</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Jaiswal, Manoj</creator><creator>Sharma, Megha</creator><creator>Khandnor, Padmavati</creator><creator>Goyal, Ashima</creator><creator>Belokar, Rajendra</creator><creator>Harit, Sandeep</creator><creator>Sood, Tamanna</creator><creator>Goyal, Kanav</creator><creator>Dua, Pallavi</creator><general>Cureus Inc</general><general>Cureus</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231204</creationdate><title>Deep Learning Models for Classification of Deciduous and Permanent Teeth From Digital Panoramic Images</title><author>Jaiswal, Manoj ; Sharma, Megha ; Khandnor, Padmavati ; Goyal, Ashima ; Belokar, Rajendra ; Harit, Sandeep ; Sood, Tamanna ; Goyal, Kanav ; Dua, Pallavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-98ebfae3941e1339e73e606882c623e173f9cdeb64488c4622bd053a39d5301d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Collaboration</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dental surgery</topic><topic>Dentistry</topic><topic>Neural networks</topic><topic>Pediatrics</topic><topic>Radiography</topic><topic>Radiology</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaiswal, Manoj</creatorcontrib><creatorcontrib>Sharma, Megha</creatorcontrib><creatorcontrib>Khandnor, Padmavati</creatorcontrib><creatorcontrib>Goyal, Ashima</creatorcontrib><creatorcontrib>Belokar, Rajendra</creatorcontrib><creatorcontrib>Harit, Sandeep</creatorcontrib><creatorcontrib>Sood, Tamanna</creatorcontrib><creatorcontrib>Goyal, Kanav</creatorcontrib><creatorcontrib>Dua, Pallavi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Curēus (Palo Alto, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaiswal, Manoj</au><au>Sharma, Megha</au><au>Khandnor, Padmavati</au><au>Goyal, Ashima</au><au>Belokar, Rajendra</au><au>Harit, Sandeep</au><au>Sood, Tamanna</au><au>Goyal, Kanav</au><au>Dua, Pallavi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Models for Classification of Deciduous and Permanent Teeth From Digital Panoramic Images</atitle><jtitle>Curēus (Palo Alto, CA)</jtitle><addtitle>Cureus</addtitle><date>2023-12-04</date><risdate>2023</risdate><volume>15</volume><issue>12</issue><spage>e49937</spage><epage>e49937</epage><pages>e49937-e49937</pages><issn>2168-8184</issn><eissn>2168-8184</eissn><abstract>Dental radiographs are essential in the diagnostic process in dentistry. They serve various purposes, including determining age, analyzing patterns of tooth eruption/shedding, and treatment planning and prognosis. The emergence of digital radiography technology has piqued interest in using artificial intelligence systems to assist and guide dental professionals. These cutting-edge technologies assist in streamlining decision-making processes by enabling entity classification and localization tasks. With the integration of artificial Intelligence algorithms tailored for pediatric dentistry applications and utilizing automated tools, there is an optimistic outlook on improving diagnostic capabilities while reducing stress and fatigue among clinicians. The dataset comprised 620 images (mixed dentition: 314, permanent dentition: 306). Panoramic radiographs taken were within the age range of 4-16 years. The classification of deciduous and permanent teeth involved training CNN-based models using different architectures such as Resnet, AlexNet, and EfficientNet, among others. A ratio of 70:15:15 was utilized for training, validation, and testing, respectively. The findings indicated that among the models proposed, EfficientNetB0 and EfficientNetB3 exhibited superior performance. Both EfficientNetB0 and EfficientNetB3 achieved an accuracy rate, precision, recall, and F1 scores of 98% in classifying teeth as either deciduous or permanent. This implies that these models were highly accurate in identifying patterns/features within the dataset used for evaluation.</abstract><cop>United States</cop><pub>Cureus Inc</pub><pmid>38179345</pmid><doi>10.7759/cureus.49937</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-8184
ispartof Curēus (Palo Alto, CA), 2023-12, Vol.15 (12), p.e49937-e49937
issn 2168-8184
2168-8184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10765069
source Access via ProQuest (Open Access); PubMed Central
subjects Artificial intelligence
Collaboration
Datasets
Deep learning
Dental surgery
Dentistry
Neural networks
Pediatrics
Radiography
Radiology
Teeth
title Deep Learning Models for Classification of Deciduous and Permanent Teeth From Digital Panoramic Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Models%20for%20Classification%20of%20Deciduous%20and%20Permanent%20Teeth%20From%20Digital%20Panoramic%20Images&rft.jtitle=Cur%C4%93us%20(Palo%20Alto,%20CA)&rft.au=Jaiswal,%20Manoj&rft.date=2023-12-04&rft.volume=15&rft.issue=12&rft.spage=e49937&rft.epage=e49937&rft.pages=e49937-e49937&rft.issn=2168-8184&rft.eissn=2168-8184&rft_id=info:doi/10.7759/cureus.49937&rft_dat=%3Cproquest_pubme%3E2920548201%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-98ebfae3941e1339e73e606882c623e173f9cdeb64488c4622bd053a39d5301d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920548201&rft_id=info:pmid/38179345&rfr_iscdi=true